zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Control of nonholonomic systems via dynamic compensation. (English) Zbl 0802.93023
Summary: The problem of controlling nonholonomic systems via dynamic state feedback and its structural aspects are analyzed. Advantages and drawbacks with respect to the use of static state feedback laws are discussed. In particular, nonholonomic constraints are shown to yield possible singularities in the dynamic extension process. Nevertheless, these singularities can be avoided by the proper design of a discontinuous external control law achieving stabilization of the transformed linear system. This is illustrated through simulations for a unicycle.

93B52Feedback control
Full Text: Link EuDML
[1] A. M. Bloch, N. H. McClamroch: Control of mechanical systems with classical nonholonomic constraints. Proc. 28th IEEE Conf. on Decision and Control, Tampa, FL, 1989, pp. 201-205.
[2] A.M. Bloch M. Reyhanoglu, N. H. McClamroch: Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Automat. Control 57 (1992), 11, 1746-1757. · Zbl 0778.93084 · doi:10.1109/9.173144
[3] R. W. Brockett: Asymptotic stability and feedback stabilization. Differential Geometric Control Theory (R. Brockett, R. S. Millmann and H.J. Sussmann, Birkhauser, Boston, MA, 1983, pp. 181-191. · Zbl 0528.93051
[4] G. Campion B. d’Andrea-Novel, G. Bastin: Structural properties of nonholonomic mechanical systems. Proc. 1st European Control Conference, Grenoble 1991, pp. 2089-2094.
[5] C. Canudas de Wit, O. J. Sørdalen: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control 57 (1992), 11, 1791-1797. · Zbl 0778.93077 · doi:10.1109/9.173153
[6] J.-M. Coron: Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992), 295-312. · Zbl 0760.93067 · doi:10.1007/BF01211563
[7] B. d’Andrea-Novel G. Bastin, G. Campion: Dynamic feedback linearization of nonholonomic wheeled mobile robots. Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 2527-2532.
[8] A. De Luca L. Lanari, G. Oriolo: Control of redundant robots on cyclic trajectories. Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 500-506.
[9] J. Descusse, D. H. Moog: Dynamic decoupling for right-invertible nonlinear systems. Systems Control Lett. 8 (1987), 345-349. · Zbl 0617.93024 · doi:10.1016/0167-6911(87)90101-0
[10] M. D. Di Benedetto, J. W. Grizzle: An analysis of regularity conditions in nonlinear synthesis. Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, Lecture Notes in Control and Information Sciences 144), Springer-Verlag, Berlin - Heidelberg - New York 1990, pp. 843-850. · Zbl 0709.93040
[11] A. Isidori: Nonlinear Control Systems. Second edition. Springer-Verlag, Berlin - Heidelberg - New York 1989. · Zbl 0693.93046
[12] G. Lafferriere, H. J. Sussmann: Motion planning for controllable systems without drift: A preliminary report. Report SYCON-90-04, Rutgers University, N.J., July 1990.
[13] J. P. Laumond: Nonholonomic motion planning versus controllability via the multibody car system example. Report STAN-CS-90-1345, Stanford University, CA, December 1990.
[14] R. Marino: On the largest feedback linearizable subsystem. Systems Control Lett. 6 (1986), 345-351. · Zbl 0577.93030 · doi:10.1016/0167-6911(86)90130-1
[15] R. M. Murray, S. S. Sastry: Steering nonholonomic systems in chained form. Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1121-1126.
[16] G. Oriolo, Y. Nakamura: Control of mechanical systems with second-order non-holonomic constraints: Underactuated manipulators. Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 2394-2403.
[17] J.-B. Pomet: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems Control Lett. 18 (1992), 147-158. · Zbl 0744.93084 · doi:10.1016/0167-6911(92)90019-O
[18] J.-B. Pomet B. Thuilot G. Bastin, G. Campion: A hybrid strategy for the feed- back stabilization of nonholonomic mobile robots. Proc. 1992 IEEE Internat. Conf. on Robotics and Automation, Nice 1992, pp. 129-134.
[19] M. Reyhanoglu, N. H. McClamroch: Reorientation of space multibody systems maintaining zero angular momentum. Proc. 1991 AIAA Conf. on Guidance, Navigation, and Control, New Orleans 1991, pp. 1330-1340.
[20] C. Samson, K. Ait-Abderrahim: Feedback control of a nonholonomic wheeled cart in cartesian space. Proc. 1991 IEEE Internat. Conf. on Robotics and Automation, Sacramento 1991, pp. 1136-1141.
[21] H. J. Sussmann: A general theorem on local controllability. SIAM J. Control Optim. 25 (1987), 1, 158-194. · Zbl 0629.93012 · doi:10.1137/0325011
[22] H. J. Sussmann: Local controllability and motion planning for some classes of systems with drift. Proc. 30th IEEE Conf. on Decision and Control, Brighton 1991, pp. 1110-1114.
[23] Z. Vafa, S. Dubowsky: The kinematics and dynamics of space manipulators: The virtual manipulator approach. Internat. J. Robotics Research 9 (1990), 4, 3-21.