David, Sinnou Lower bounds for heights on abelian varieties. (Minorations de hauteurs sur les variétés abéliennes.) (French) Zbl 0803.11031 Bull. Soc. Math. Fr. 121, No. 4, 509-544 (1993). J. H. Silverman [Duke Math. J. 51, 395-403 (1984; Zbl 0579.14035)] has conjectured that, given a number field \(k\) and an integer \(g>0\) there exists a constant \(c= c(k,g) >0\) such that for all points \(\tau\) in Siegel space \(S_ g\) corresponding to an abelian variety \(A= A(\tau)\) defined over \(k\) and all points \(P\in A(k)\) which are of infinite order modulo every proper abelian subvariety \(B\subseteq A\), the canonical height \(\widehat {h} (P)\) satisfies the inequality \(\widehat {h}(P)\geq c(k,g) h(A(\tau))\). Here \(h(A (\tau))\) is a logarithmic height of the abelian variety \(A\). This generalizes a conjecture of Serge Lang on elliptic curves.The present paper proves a partial result in this direction. Let \(g\), \(k\), and \(\tau\) be as above and let \(D= \max (2, [k: \mathbb{Q}])\), \(h= \max (1, h(A (\tau)))\), and \(\rho= D(h+\log D)/ \| \text{Im } \tau\|+ D^{1/( g+2)}\). Then there exist constants \(c_ 1= c_ 1(g) >0\) and \(c_ 2= c_ 2 (g)\) such that all \(P\in A(k)\) satisfy either (1) there exists a subvariety \(B\neq A\) of \(A\) of degree \(\leq c_ 2 (\rho\log \rho)^ g\) such that \(P\) is of order \(\leq c_ 2 (\rho\log \rho)^ g\) modulo \(B\); or (2) \(\widehat {h} (P)\geq c_ 1 \rho^{-4g-2} (\log 2\rho)^{-4g -1} h\).This is the first lower bound that can go to infinity with the height of the variety. The proof uses transcendence theory, via an associated semiabelian variety of dimension \(g+1\) associated to \(A\) and \(P\). Reviewer: P.Vojta (Berkeley) Cited in 2 ReviewsCited in 10 Documents MSC: 11G10 Abelian varieties of dimension \(> 1\) 14K15 Arithmetic ground fields for abelian varieties Keywords:abelian variety; canonical height; lower bound Citations:Zbl 0579.14035 PDFBibTeX XMLCite \textit{S. David}, Bull. Soc. Math. Fr. 121, No. 4, 509--544 (1993; Zbl 0803.11031) Full Text: DOI Numdam EuDML References: [1] BERTRAND (D.) . - Endomorphismes de groupes algébriques ; applications arithmétiques , Approximations diophantiennes et nombres transcendants, Progress in Math., 31, Birkhäuser, Boston-Basel-Stuttgart, 1983 . MR 85d:11069 | Zbl 0526.10029 · Zbl 0526.10029 [2] BERTRAND (D.) et PHILIPPON (P.) . - Sous-groupes algébriques de groupes algébriques commutatifs , Illinois J. Math., t. 32 (2), 1988 , p. 263-280. Article | MR 89i:14039 | Zbl 0618.14020 · Zbl 0618.14020 [3] DAVID (S.) . - Fonctions thêta et points de torsion des variétés abéliennes , Compositio Math., t. 78, 1991 , p. 121-160. Numdam | MR 92d:11061 | Zbl 0741.14025 · Zbl 0741.14025 [4] DAVID (S.) . - Théorie de Baker dans les familles de groupes algébriques commutatifs , thèse de doctorat, Université de Paris VI, 1989 . [5] DENIS (L.) . - Lemmes de multiplicités et intersections , C.R. Acad. Sci. Paris, t. 314, série I, 1992 , p. 97-100. MR 93c:11052 | Zbl 0786.11045 · Zbl 0786.11045 [6] FALTINGS (G.) und WÜSTHOLZ (G.) . - Einbettungen kommutativer algebraicher Gruppen und einige ihrer Eigenschaften , J. Reine Angew. Math., t. 354, 1984 , p. 175-205. Zbl 0543.14029 · Zbl 0543.14029 · doi:10.1515/crll.1984.354.175 [7] HINDRY (M.) and SILVERMAN (J.) . - The canonical height and integer points on elliptic curves , Inv. Math., t. 93, 1988 , p. 419-450. MR 89k:11044 | Zbl 0657.14018 · Zbl 0657.14018 · doi:10.1007/BF01394340 [8] HINDRY (M.) and SILVERMAN (J.) . - On Lehmer’s conjecture for elliptic curves , [C. Goldstein éd.], Séminaire de théorie des nombres de Paris 1988 - 1989 , Progress in Math., Birkhäuser, Boston-Basel-Stuttgart, 1990 , p. 103-116. MR 92e:11062 | Zbl 0741.14013 · Zbl 0741.14013 [9] IGUSA (J.) . - Theta functions . - Grundlehren Math. Wiss., 194, Springer, Berlin-Heidelberg-New York, 1972 . MR 48 #3972 | Zbl 0251.14016 · Zbl 0251.14016 [10] KEMPF (G.) . - Multiplication over abelian varieties , Am. J. Math., t. 110, 1988 , p. 765-773. MR 90a:14061 | Zbl 0681.14023 · Zbl 0681.14023 · doi:10.2307/2374649 [11] KNOP (F.) and LANGE (H.) . - Commutative algebraic groups and intersection of quadrics , Math. Ann., t. 267, 1984 , p. 555-571. MR 86f:14031 | Zbl 0544.14028 · Zbl 0544.14028 · doi:10.1007/BF01455973 [12] LANG (S.) . - Elliptic curves: diophantine analysis . - Grundlehen Math. Wiss., 231, Springer, Berlin-Heidelberg-New York, 1978 . MR 81b:10009 | Zbl 0388.10001 · Zbl 0388.10001 [13] LANGE (H.) . - Families of translations of commutative algebraic groups , J. Algebra, t. 109, 1987 , p. 260-265. MR 88i:14043 | Zbl 0657.14026 · Zbl 0657.14026 · doi:10.1016/0021-8693(87)90174-8 [14] LANGE (H.) . - A remark on the degrees of commutative algebraic groups , Illinois J. Math., t. 33 (3), 1989 , p. 409-415. Article | MR 90d:14049 | Zbl 0691.14028 · Zbl 0691.14028 [15] LAURENT (M.) . - Minoration de la hauteur de Néron-Tate , [M.-J. Bertin, éd.], Séminaire de théorie des nombres de Paris 1981 - 1982 , Progress in Math., Birkhäuser, Boston-Basel-Stuttgart, 1983 , p. 137-152. MR 85e:11048 | Zbl 0521.14010 · Zbl 0521.14010 [16] MASSER (D.) . - Small values of heights on families of abelian varieties , Proc. Conf. Bonn, Lecture Notes 1290, Springer-Verlag 1985 , p. 109-148. MR 89g:11048 | Zbl 0639.14025 · Zbl 0639.14025 [17] MASSER (D.) . - Lettre à Daniel Bertrand du 17-11-86 , nov. 1986 . [18] MASSER (D.) . - Counting points of small height on elliptic curves , Bull. Soc. Math. France, t. 117, 1989 , p. 247-265. Numdam | MR 90k:11068 | Zbl 0723.14026 · Zbl 0723.14026 [19] MASSER (D.) . - Lettre à l’auteur du 18-09-90 , sept. 1990 . Voir aussi Large periods matrices and a conjecture of Lang, à paraître dans le Séminaire de théorie des nombres 1991 - 1992 [S. David, éd.], Progress in Math., Birkhäuser, Boston-Basel-Stuttgart, 1993 , p. 153-177. Zbl 0827.11037 · Zbl 0827.11037 [20] MASSER (D.) and WÜSTHOLZ (G.) . - Estimating isogenies on elliptic curves , Inv. Math., t. 100 (1), 1990 , p. 1-24. MR 91d:11060 | Zbl 0722.14027 · Zbl 0722.14027 · doi:10.1007/BF01231178 [21] MORET-BAILLY (L.) . - Compactifications, hauteurs et finitude , Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, L. Szpiro, Astérisque, 127, S.M.F. 1985 , p. 113-129. MR 801920 · Zbl 1182.14048 [22] MUMFORD (D.) . - Abelian varieties , TIFR studies in mathematics, second edition. - Oxford University Press, 1974 . · Zbl 0199.24601 [23] MANIN (I.) and ZARHIN (G.) . - Heights on families of abelian varieties , USSR Math. Sbornik, t. 18, 1972 , p. 169-179. Zbl 0263.14011 · Zbl 0263.14011 · doi:10.1070/SM1972v018n02ABEH001749 [24] PHILIPPON (P.) . - Lemmes de zéros dans les groupes algébriques commutatifs , Bull. Soc. Math. France, t. 114, 1986 , p. 355-383. Numdam | MR 89c:11111 | Zbl 0617.14001 · Zbl 0617.14001 [25] PHILIPPON (P.) et WALDSCHMIDT (M.) . - Formes linéaires de logarithmes dans les groupes algébriques commutatifs , Illinois J. Math., t. 32 (2), 1988 , p. 281-314. Article | MR 89j:11070 | Zbl 0651.10023 · Zbl 0651.10023 [26] SHIMURA (G.) . - On the derivatives of theta functions and modular forms , Duke Math. J., t. 44, 1977 , p. 365-387. Article | MR 57 #5911 | Zbl 0371.14023 · Zbl 0371.14023 · doi:10.1215/S0012-7094-77-04416-7 [27] SILVERMAN (J.) . - Lower bounds for the canonical height on elliptic curves , Duke Math. J., t. 48, 1981 , p. 633-648. Article | MR 82k:14043 | Zbl 0475.14033 · Zbl 0475.14033 · doi:10.1215/S0012-7094-81-04834-1 [28] SILVERMAN (J.) . - Lower bounds for height functions , Duke Math. J., t. 51 (2), 1984 , p. 395-403. Article | MR 87d:11039 | Zbl 0579.14035 · Zbl 0579.14035 · doi:10.1215/S0012-7094-84-05118-4 [29] SZPIRO (L.) . - Discriminant et conducteur des courbes elliptiques , Séminaire sur les pinceaux de courbes elliptiques, L. Szpiro, Astérisque, 183, S.M.F. 1990 , p. 7-18. MR 91g:11059 | Zbl 0742.14026 · Zbl 0742.14026 [30] WALDSCHMIDT (M.) . - A lower bound for linear forms in logarithms , Acta Arith., t. 37, 1980 , p. 257-283. Article | MR 82h:10049 | Zbl 0357.10017 · Zbl 0357.10017 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.