The Hatcher-Waldhausen map is a spectrum map. (English) Zbl 0803.19002

We prove that the map \(G/O\to \Omega W h^{\text{Diff}}(*)\) which was constructed by Waldhausen and proved to be a rational equivalence by Bökstedt, is in fact an infinite loop map if we use a multiplicative infinite loop space structure on the target. Here \(G/O\) is the homotopy fiber of the \(j\)-homomorphism \(BO\to BG\), and \(Wh^{\text{Diff}} (*)\) is the differentiable Whitehead space of a point, which is a double delooping of the stable concordance (pseudoisotopy) space of a point.
As an application we investigate the obstruction to improving Bökstedt’s two-primary results on splitting the étale \(K\)-theory space \(JK(\mathbb{Z})\) off from \(K(\mathbb{Z})\), to the unlooped space or spectrum level. In particular, if the usual map \(Q(S^ 0)\to K(\mathbb{Z})\) from stable homotopy to the algebraic \(K\)-theory of the integers factors through the image of \(J\)-spectrum as a spectrum map, such a spectrum level splitting exists. Note that S. A. Mitchell has proved the analogous space level factorization.


19D10 Algebraic \(K\)-theory of spaces
19D50 Computations of higher \(K\)-theory of rings
55P42 Stable homotopy theory, spectra
19L20 \(J\)-homomorphism, Adams operations
55S25 \(K\)-theory operations and generalized cohomology operations in algebraic topology
Full Text: DOI EuDML


[1] Adams, J.F.: Infinite loop spaces. (Ann. Math. Stud., vol. 90) Princeton: Princeton University Press 1978 · Zbl 0398.55008
[2] Adams, J.F., Priddy, S.B.: Uniqueness ofBSO. Math. Proc. Camb. Philos. Soc.80, 475-509 (1976) · Zbl 0338.55011
[3] Anderson, D.W., Hodgkin, L.: TheK-theory of Eilenberg-MacLane complexes. Topology7, 317-329 (1968) · Zbl 0199.26302
[4] B?kstedt, M.: The rational homotopy type of ?Wh Diff(*). In: I. Madsen, B. Oliver (eds.) Proceedings Algebraic Topology, Aarhus 1982 (Lect. Notes Math., vol. 1051, pp. 25-37) Berlin Heidelberg New York: Springer 1984
[5] B?kstedt, M., Hsiang, W.C. Madsen I.: The cyclotomic trace and algebraicK-theory of spaces, Invent. Math.111, 465-540 (1993) · Zbl 0804.55004
[6] B?kstedt, M., Madsen, I.: Topological cyclic homology of ? p . Ast?risque 1994 (to appear)
[7] B?kstedt, M., Waldhausen, F.: The mapBSG?A(*)?Q(S 0 ). In: W. Browder (ed.). Algebraic Topology and AlgebraicK-Theory (Ann. Math. Stud., vol. 113, pp. 418-431) Princeton: Princeton University Press 1987
[8] Dwyer, W. Friedlander, E.: Conjectural calculations of general linear group homology. In: S. J. Bloch et al. (eds.): Applications of algebraicK-theory to algebraic geometry and number theory. Contemp. Math.55, 135-147 (1986)
[9] Friedlander, E.M.: ?tale homotopy of simplicial schemes (Ann. Math. Stud., vol. 104) Princeton: Princeton University Press 1982 · Zbl 0538.55001
[10] Gabber, O.:K-theory of Henselian local rings and Henselian pairs. In: AlgebraicK-Theory, commutative algebra, and algebraic geometry. Contemp. Math.126 (1992) · Zbl 0791.19002
[11] Ganea, T.: A generalization of the homology and homotopy suspension. Comment. Math. Helv.39, 295-322 (1965) · Zbl 0142.40702
[12] Hodkin, L., Snaith, V.: TheK-theory of some more well-known spaces. III. J. Math.22, 270-278 (1978) · Zbl 0386.55008
[13] Ligaard, H.J.: Infinite loop maps fromSF toBO ? at the prime 2. III. J. Math.21, 830-835 (1977) · Zbl 0394.55018
[14] Madsen, I., Snaith, V., Tornehave, J.: Infinite loop maps in geometric topology. Math. Proc. Camb. Phil. Soc.81, 399-429 (1977) · Zbl 0357.55015
[15] May, J.P. et al.:E ? ring spaces andE ? ring spectra. (Lect. Notes Math., vol. 577) Berlin Heidelberg New York: Springer 1977 · Zbl 0345.55007
[16] Miller, H.R., Priddy, S.B.: OnG and the Stable Adams Conjecture. In: Barratt, M.G., Mahowald M.E. (eds.): Geometric Applications of Homotopy Theory II, Proceedings, Evanston 1977 (Lect. Notes Math., vol. 658, pp. 331-348) Berlin Heidelberg New York: Springer 1978
[17] Milnor, J.: Morse theory. (Ann. Math. Stud., vol. 51) Princeton: Princeton University Press 1963 · Zbl 0108.10401
[18] Mitchell, S.: The MoravaK-theory of algebraicK-theory spectra.K-theory3, 607-626 (1990) · Zbl 0709.55011
[19] Rognes, J.: Characterizing connectedK-theory by homotopy groups. Math. Proc. Camb. Phil. Soc.,114, 99-102 (1993) · Zbl 0783.55006
[20] Thomason, R.W.: The Lichtenbaum-Quillen conjecture forK/l *[??1]. In: Current trends in algebraic topology, Part 1. CMS Conf. Proc. vol. 2, 117-139 (1982)
[21] Waldhausen, F.: AlgebraicK-theory of topological spaces. II. In: Algebraic topology. Proc. Sympos., Univ. Aarhus, Aarhus, 1978 (Lect. Notes Math., vol. 763, pp. 356-394) Berlin Heidelberg New York: Springer 1979
[22] Waldhausen, F.: AlgebraicK-theory of spaces, a manifold approach. In: Current trends in algebraic topology, Part 1. CMS Conf. Proc. vol. 2, pp. 141-184 (1982)
[23] Waldhausen, F.: AlgebraicK-theory of spaces, concordance, and stable homotopy theory. In: W. Browder (ed.): Algebraic topology and algebraicK-theory. (Ann. Math. Stud., vol. 113, pp. 392-417) Princeton: Princeton University Press 1987
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.