×

zbMATH — the first resource for mathematics

An effective Matsusaka big theorem. (English) Zbl 0803.32017
We prove the following effective form of Matsusaka’s Big Theorem. For an ample line bundle \(L\) over a compact complex manifold \(X\) of complex dimension \(n\) with canonical line bundle \(K_ X\), the line bundle \(mL\) is very ample for \(m\) no less than \[ (2^{3n-1} 5n)^{4^{n-1}} (3(3n- 2)^ nL^ n + K_ X \cdot L^{n - 1})^{4^{n - 1}3n} \over (6(3n - 2)^ n - 2n - 2)^{4^{n - 1} n - {2 \over 3}} (L^ n)^{4^{n-1} 3(n - 1)}. \]

MSC:
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
14E25 Embeddings in algebraic geometry
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] J.-P. DEMAILLY, Champs magnétiques et inégalités de Morse pour la \(d"\) cohomologie, Compte-Rendus Acad. Sci, Série I, 301 (1985), 119-122 and Ann. Inst. Fourier, 35-4 (1985), 189-229. · Zbl 0565.58017
[2] J.-P. DEMAILLY, A numerical criterion for very ample line bundles, J. Diff. Geom., 37 (1993), 323-374. · Zbl 0783.32013
[3] L. EIN and R. LAZARSFELD, Global generation of pluricanonical and adjoint linear series on smooth projective threefolds, preprint, 1992. · Zbl 0803.14004
[4] T. FUJITA, On polarized manifolds whose adjoint bundles are not semipositive, Proceedings of the 1985 Sendai Conference on Algebraic Geometry, Advanced Studies in Pure Mathematics, 10 (1987), 167-178. · Zbl 0659.14002
[5] J. KOLLÁR, Effective base point freeness, Math. Ann., to appear. · Zbl 0818.14002
[6] J. KOLLÁR and T. MATSUSAKA, Riemann-Roch type inequalities, Amer. J. Math., 105 (1983), 229-252. · Zbl 0538.14006
[7] P. LELONG, Plurisubharmonic functions and positive differential forms, Gordon and Breach, New York, 1969. · Zbl 0195.11604
[8] D. LIEBERMAN and D. MUMFORD, Matsusaka’s big theorem (Algebraic Geometry, Arcata 1974), Proceedings of Symposia in Pure Math., 29 (1975), 513-530. · Zbl 0321.14004
[9] T. MATSUSAKA, On canonically polarized varieties II, Amer. J. Math., 92 (1970), 283-292. · Zbl 0195.22802
[10] T. MATSUSAKA, Polarized varieties with a given Hilbert polynomial, Amer. J. Math., 94 (1972), 1027-1077. · Zbl 0256.14004
[11] A. NADEL, Multiplier ideal sheaves and existence of Kähler-Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. U.S.A., 86 (1989), 7299-7300 and Ann. of Math., 132 (1990), 549-596. · Zbl 0711.53056
[12] Y.-T. SIU, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math., 27 (1974), 53-156. · Zbl 0289.32003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.