Cerveau, Dominique Minimal algebraic foliations in \(\mathbb{C}\mathbb{P}(n)\). (Minimaux des feuilletages algébriques de \(\mathbb{C}\mathbb{P}(n)\).) (French) Zbl 0803.32018 Ann. Inst. Fourier 43, No. 5, 1535-1543 (1993). We prove that a minimal set of an algebraic foliation in \(\mathbb{C} \mathbb{P}(n)\) either is a Levi-flat hypersurface or has abelian linearizable holonomy. Reviewer: D.Cerveau (Rennes) Cited in 17 Documents MSC: 32S65 Singularities of holomorphic vector fields and foliations 34M99 Ordinary differential equations in the complex domain Keywords:minimal set; algebraic foliation; holonomy × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] [BLM] , , , Feuilletages de ℂℙ(n) : de l’holonomie hyperbolique pour les minimaux exceptionnels, Publ. Math. I.H.E.S., n° 75 (1992), 123-134. · Zbl 0782.32023 [2] [CLS] , , , Minimal set of foliations on complex projective spaces, Publ. Math. I.H.E.S., 68 (1988), 187-203. · Zbl 0682.57012 [3] [CM] , , Groupes d’automorphismes de ℂ,0 et équations différentielles ydy +...= 0, Bull. S.M.F., 116 (1988), 459-488. · Zbl 0696.58011 [4] [L] , Préprint, Impa Rio (1993). [5] [19] , On Selberg’s zeta function for compact Riemann surfaces, Phys. Lett., B 188 (1987 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.