zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Painlevé-Kowalevski and poly-Painlevé tests for integrability. (English) Zbl 0803.35128
Summary: The characteristic feature of the so-called Painlevé test for integrability of an ordinary (or partial) analytic differential equation, as usually carried out, is to determine whether all its solutions are single-valued by local analysis near individual singular points of solutions. This test, interpreted flexibly, has been quite successful in spite of various evident flaws. We review the Painlevé test in detail and then propose a more robust and generally more appropriate definition of integrability: a multivalued function is accepted as an integral if its possible values (at any given point in phase space) are not dense. This definition is illustrated and justified by examples, and a widely applicable method (the poly- Painlevé method) of testing for it is presented, based on asymptotic analysis covering several singularities simultaneously.

35Q53KdV-like (Korteweg-de Vries) equations
35-03Historical (partial differential equations)
37J35Completely integrable systems, topological structure of phase space, integration methods
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies