Janson, Svante Interpolation of subcouples and quotient couples. (English) Zbl 0803.46080 Ark. Mat. 31, No. 2, 307-338 (1993). Summary: We extend recent results by Pisier on \(K\)-subcouples, i.e. subcouples of an interpolation couple that preserve the \(K\)-functional (up to constants) and corresponding notions for quotient couples. Examples include interpolation (in the pointwise sense) and a reinterpretation of the Adamyan-Arov-Krein theorem for Hankel operators. Cited in 18 Documents MSC: 46M35 Abstract interpolation of topological vector spaces 47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators Keywords:\(K\)-subcouples; subcouples of an interpolation couple that preserve the \(K\)-functional; quotient couples; reinterpretation of the Adamyan-Arov- Krein theorem for Hankel operators PDFBibTeX XMLCite \textit{S. Janson}, Ark. Mat. 31, No. 2, 307--338 (1993; Zbl 0803.46080) Full Text: DOI References: [1] Ball, J. A. andHelton, J. W., A Beurling-Lax theorem for the Lie groupU (m, n) which contains most classical interpolation theory,J. Operator Theory 9 (1983), 107–142. · Zbl 0505.47029 [2] Bergh, J. andLöfström, L.,Interpolation Spaces, Springer-Verlag, Berlin, 1976. · Zbl 0344.46071 [3] Bourgain, J., Some consequences of Pisier’s approach to interpolation,Israel J. Math. 77 (1992), 165–185. · Zbl 0788.46070 · doi:10.1007/BF02808016 [4] Brudnyî, Yu. A. andKrugljak, N. Y. Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam, 1991. [5] Bennett, C. andSharpley, R.,Interpolation of Operators, Academic Press, Orlando, 1988. [6] Cotlar, M. andSadosky, C., Weighted and two-dimensional Adamjan-Arov-Krein theorems and analogues for Sarason commutants,Mittag-Leffler Report 24 (1990/91). [7] DeVore, R. A. andScherer, K., Interpolation of operators on Sobolev spaces.,Ann. of Math. 109 (1979), 583–599. · Zbl 0422.46028 · doi:10.2307/1971227 [8] Garnett, J.,Bounded Analytic Functions, Academic Press, New York, 1981. · Zbl 0469.30024 [9] Hernandez, E., Rochberg, R. andWeiss, G., Interpolation of subspaces and quotient spaces by the complex method, inFunction Spaces and Applications, Proceedings, Lund 1986 (M. Cwikel, J. Peetre, Y. Sagher, H. Wallin, eds),Lecture Notes in Math. 1302, pp. 253–289, Springer-Verlag, Berlin, 1988. [10] Holmstedt, T., Interpolation of quasi-normed spaces,Math. Scand. 26 (1970), 177–199. · Zbl 0193.08801 [11] Holmstedt, T. andPeetre, J., On certain functionals arising in the theory of interpolation spaces,J. Funct. Anal. 4 (1969), 88–94. · Zbl 0175.42601 · doi:10.1016/0022-1236(69)90023-8 [12] Janson, S., Minimal and maximal methods of interpolation,J. Funct. Anal. 14 (1981), 50–72. · Zbl 0492.46059 · doi:10.1016/0022-1236(81)90004-5 [13] Kaftal, V., Larson, D. andWeiss, G., Quasitriangular subalgebras of semifinite von Neumann algebras are closed,J. Funct. Anal. 107 (1992), 387–401. · Zbl 0801.46069 · doi:10.1016/0022-1236(92)90115-Y [14] Kaijser, S. andPelletier, J. W.,Interpolation Functors and Duality,Lecture Notes in Math.1208, Springer-Verlag, Berlin, 1986. [15] Miyashi, A., Some Littlewood-Paley type inequalities and their application to the Fefferman-Stein decomposition of BMO,Indiana Univ. Math. J. 39 (1990), 563–583. · Zbl 0696.42015 · doi:10.1512/iumj.1990.39.39031 [16] Nikolskiî, N. K.,Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986. [17] Peetre, J., Interpolation functors and Banach couples, inActes Congrès Intern. Math. 1970, vol. 2, pp. 373–378, Gauthier-Villars, Paris, 1971. [18] Peller, V. V., Hankel operators of classG p and their applications (rational approximation, Gaussian processes, the majorization problems for operators),Mat. Sb. (N.S.)113 (1980), 538–581 (Russian); English transl.,Math. USSR-Sb. 41 (1982), 443–479. · Zbl 0458.47022 [19] Peller, V. V., A description of Hankel operators of classG p forp>0 an investigation of the rate of rational approximation, and other applications,Mat. Sb. (N.S.)122 (1983), 481–510 (Russian); English transl.,Math. USSR-Sb. 50 (1985), 465–494. [20] Peller, V. V., A remark on interpolation in spaces of vector-valued functions,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 141 (1985), 162–164. (Russian.) · Zbl 0564.46056 [21] Pisier, G., Interpolation betweenH p spaces and non-commutative generalizations I,Pacific J. Math. 155 (1992), 341–368. · Zbl 0747.46050 [22] Pisier, G., Interpolation betweenH p spaces and non-commutative generalizations II, to appear. · Zbl 0788.46071 [23] Pisier, G., A simple proof of a theorem of Jean Bourgain,Michigan Math. J. 39 (1992), 475–484. · Zbl 0787.47021 · doi:10.1307/mmj/1029004601 [24] Shapiro, H. S. andShields, A. L., On some interpolation problems for annlytic functions,Amer. J. Math. 83 (1961), 513–532. · Zbl 0112.29701 · doi:10.2307/2372892 [25] Treil, S. R., The theorem of Adamyan-Arov-Krein: vector variant,Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 141 (1985), 56–71. (Russian.) · Zbl 0579.47024 [26] Triebel, H., Allgemeine Legendresche Differentialoperatoren II,Ann. Scuola Norm. Sup. Pisa Cl. Sci (3)24 (1970), 1–35. · Zbl 0191.14502 [27] Wallstén, R., Remarks on interpolation of subspaces, inFunction Spaces and Applications, Proceedings, Lund 1986 (M. Cwikel, J. Peetre, Y. Sagher, H. Wallin, eds.),Lecture Notes in Math. 1302, pp. 410–419, Springer-Verlag, Berlin, 1988. · Zbl 0662.46079 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.