Heinzner, P.; Huckleberry, A. T.; Loose, F. Kählerian extensions of the symplectic reduction. (English) Zbl 0803.53042 J. Reine Angew. Math. 455, 123-140 (1994). The existence of a Kählerian Stein extension of a symplectic manifold is proved. It is shown that the symplectic structure on the reduction of the moment fiber is induced by the natural Kählerian quotient structure. A general context for studying singular symplectic structures via plurisubharmonic functions on Stein spaces is proposed. Reviewer: P.Heinzner Cited in 3 ReviewsCited in 17 Documents MSC: 53C55 Global differential geometry of Hermitian and Kählerian manifolds 53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.) 32U05 Plurisubharmonic functions and generalizations 32F10 \(q\)-convexity, \(q\)-concavity Keywords:Kählerian Stein extension; symplectic manifold; Kählerian quotient; singular symplectic structures; plurisubharmonic functions PDF BibTeX XML Cite \textit{P. Heinzner} et al., J. Reine Angew. Math. 455, 123--140 (1994; Zbl 0803.53042) Full Text: Crelle EuDML