zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Differentiable families of subspaces. (English) Zbl 0803.58010
A differentiable family of $k$-dimensional subspaces of $K\sp n$ is viewed as a mapping from the space of parameters $M$ into the Grassmann manifold $\text{Gr}\sb{k,n}$. There are given two local characterizations of such families and their globalized versions when $M$ is contractible.

58D15Manifolds of mappings
58C06Set-valued and function-space valued mappings on manifolds
Full Text: DOI
[1] Arnold, V. I.: On matrices depending on parameters. Uspekhi mat. Nauk 26 (1971)
[2] Evard, J. C.; Garcia, J. M.: On similarities of class cp and applications to matrix differential equations. Linear algebra appl. 137, No. 138, 363-386 (1990) · Zbl 0704.34045
[3] Guralnick, R. M.: Similarity of matrices over commutative rings. Linear algebra appl. 157, 55-68 (1991) · Zbl 0736.15005
[4] Griffiths, Ph.; Harris, J.: Principles of algebraic geometry. (1978) · Zbl 0408.14001
[5] Gohberg, I.; Leiterer, J.: Über algebren stetiger operatorfunktionen. Studia math. 57 (1976) · Zbl 0343.47021
[6] Gohberg, I.; Lancaster, P.; Rodman, L.: Invariant subspaces of matrices with applications. (1986) · Zbl 0608.15004
[7] Husemoller, D.: Fibre bundles. (1975) · Zbl 0307.55015
[8] Kato, T.: A short introduction to perturbation theory for linear operators. (1982) · Zbl 0493.47008