zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Ocean plankton populations as excitable media. (English) Zbl 0803.92026
Summary: Plankton populations undergo dramatic surges. Rapid increases and decreases by a factor of 10 or more are observed, often separated by relatively stable interludes. We propose a description of plankton communities as excitable systems. In particular, we present a model for the evolution of phytoplankton and zooplankton populations which resembles models for the behaviour of excitable media. The parameter dependency of the various “excitable” phenomena, trigger mechanism, threshold, and slow recovery, is clear, and permits ready investigation of the influence of properties of the physical environment, including variations in nutrient fluxes, temperature or pollution levels.

Full Text: DOI
[1] Busenberget al. 1990. The dynamics of a plankton-nutrient interaction.Bull. math. Biol. 52, 677. · Zbl 0704.92020 · doi:10.1007/BF02462105
[2] Cloern, J. E. 1991. Tidal stirring and phytoplankton bloom dynamics in an estuary.J. mar. Res. 49, 203. · doi:10.1357/002224091784968611
[3] Grindrod, P. 1991.Patterns and Waves. Oxford: Oxford Universit Press. · Zbl 0743.35032
[4] Holling, C. S. 1959. The components of predation as revealed by a study of small mammal predation on the European pine sawfly.Can. Ent. 91, 293. · doi:10.4039/Ent91293-5
[5] Iizuka, S.et al. 1989. Population growth ofGymnodinium nagasakiense red tide in Omura Bay. In:Red Tides: Biology, Environmental Science and Toxicology T. Okaichi (Ed.), p. 269. Amsterdam: Elsevier.
[6] Iwasaki, H. 1989. Recent progress of red tide studies in Japan: an overview. In:Red Tides: Biology, Environmental Science and Toxicology. T. Okaichi (Ed.), p. 3. Amsterdam: Elsevier.
[7] Levin, S. A and L. Segel. 1976. Hypothesis for the origin of plankton patchiness.Nature 259, 659. · doi:10.1038/259659a0
[8] Ludwig, D.et al. 1978. Quanlitative analysis of an insect outbreak system: the spruce budworm and forst.J. Anim. Ecol. 47, 315. · doi:10.2307/3939
[9] almeida Machado P. 1978. Dinoflagellate blooms on the Brazilian South Atlantic coast. In:Toxic Dinoflagellate Blooms. Taylor and Seliger (Eds), p. 29. Amsterdam: Elsevier/North-Holland.
[10] Murray, J. M. 1990.Mathematical Biology, Berlin: Springer Verlag. · Zbl 0704.92001
[11] Morey-Baines, G. 1978. The ecological role of red tides in the Los Angeles-Long Beach Harbour food web. In:Toxic Dinoflagellate Blooms. Taylor and Seliger (Eds), p. 315. Amsterdam: Elsevier/North-Holland.
[12] Nishijima, T. and Y. Hata. 1989. The dynamics of vitamin B12 and its relation to the outbreak ofChattonella red tides in Harima Nada, the Seto inland sea. In:Red. Tides: Biology, Environmental Science and Toxicology, T. Okaichi (Ed.), p. 257, Amsterdam: Elsevier.
[13] Park, J. S.et al. 1989. Studies on red tide phenomena in Korean coastal waters. In:Red Tides: Biology, Environmental Science and Toxicology. T. Okaichi (Ed.), p. 37. Amsterdam: Elsevier.
[14] Pingree, R. D.et al. 1975. Summer phytoplankton blooms and red tides along tidal fronts in the approaches to the English Channel.Nature 258, 672. · doi:10.1038/258672a0
[15] Provasoli, L. 1978. Recent progress: an overview. In:Toxic Dinoflagellate Blooms. Taylor and Seliger (Eds), p. 1. Amsterdam, Elsevier/North-Holland.
[16] Satora, T. and A. Laws. 1989. Periodic blooms of the silicoflagellateDictyocha perlaevis in the subtropical inlet, Kaneohe Bay, Hawaii. In:Red Tides: Biology, Environmental Science and Toxicology, T. Okaichi (Ed.), p. 69, Amsterdam: Elsevier.
[17] Tyson, J. and J. Keener. 1988. Singular perturbation theory of travelling waves in excitable media (a review).Physica D 32, 327. · Zbl 0656.76018 · doi:10.1016/0167-2789(88)90062-0
[18] Uye, S. 1986. Impact of copepod grazing on the red tide flagellateChattonella antiqua.Mar. Biol. 92, 35. · doi:10.1007/BF00392743
[19] Wake, G.et al. 1991. Picoplankton and marine food chain dynamics in a variable mixed layer: a reaction-diffusion model.Ecol. modelling 57, 193. · doi:10.1016/0304-3800(91)90113-F
[20] Wyatt, T. and J. Horwood. 1973. Model which generates red tides.Nature 244, 238. · doi:10.1038/244238a0