zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On generators of integrated $C$-semigroups and $C$-cosine functions. (English) Zbl 0804.47044
Summary: The following two theorems are proved: (1) the generator of an exponentially equicontinuous $n$-times integrated $C$-cosine function also generates an exponentially equicontinuous $[(n+1)/2]$-times integrated $C$-semigroup; (2) If $A$ and $-A$ are generators of exponentially equicontinuous $n$- times integrated $C$-semigroups, then $A\sp 2$ generates an exponentially equicontinuous $n$-times integrated $C$-cosine function.

MSC:
47D06One-parameter semigroups and linear evolution equations
47D09Operator sine and cosine functions and higher-order Cauchy problems
WorldCat.org
Full Text: DOI EuDML
References:
[1] Arendt, W.,Vector valued Laplace transforms and Cauchy problems, Israel J. Math.59 (1987), 327--352. · Zbl 0637.44001 · doi:10.1007/BF02774144
[2] Davies, E. B., and M. M. Pang,The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc.55 (1987), 181--208. · Zbl 0651.47026 · doi:10.1112/plms/s3-55.1.181
[3] deLaubenfels, R.,C-semigroups and the Cauchy problem, Journal of Functional Analysis, to appear. · Zbl 0717.47014
[4] deLaubenfels, R.,Existence and uniqueness families for the abstract Cauchy problem, J. London Math. Soc., to appear. · Zbl 0766.47011
[5] Fattorini, H. O.,Ordinary differential equations in linear topological spaces, I., J. Differential Eq.5 (1968), 72--105. · Zbl 0175.15101 · doi:10.1016/0022-0396(69)90105-3
[6] Fattorini, H. O., ”The Second order linear differential equations in Banach spaces,” North-Holland Mathematics Studies 108, North-Holland, 1985. · Zbl 0564.34063
[7] Goldstein, J. A.,The universal addability problem for generators of cosine functions and operator groups, Houston J. Math.6 (1980), 365--373. · Zbl 0454.47019
[8] Kellermann, H., and M. Hieber,Integrated semigroups, J. Funct. Anal.84 (1989), 160--180. · Zbl 0689.47014 · doi:10.1016/0022-1236(89)90116-X
[9] Li, Y.-C., and S.-Y. Shaw,Integrated C-semigroups and the abstract Cauchy problem, 1991, preprint. · Zbl 0892.47042
[10] Li, Y.-C., and S.-Y. Shaw,Integrated C-cosine functions and the abstract Cauchy problem, 1991, preprint.
[11] Neubrander, F.,Integrated semigroups and their application to the abstract Cauchy problem, Pacific J. Math.135 (1988), 111--155. · Zbl 0675.47030
[12] Tanaka, N., and I. Miyadera,Exponentially bounded C-semigroups and integrated semigroups, Tokyo J. Math.12 (1989), 99--115. · Zbl 0702.47028 · doi:10.3836/tjm/1270133551