Symmetric spaces and strongly isotropy irreducible spaces. (English) Zbl 0804.53075

The authors establish a correspondence between the compact simply connected irreducible symmetric spaces and the compact strongly isotropy irreducible quotients of the classical groups (that is the quotients with irreducible connected component of the isotropy group). It is based on the following observation by Wall, who compared the classification lists.
Let \(G/K\) be a compact simply connected irreducible symmetric space. Then either the isotropy group \(K\) is maximal in \(\text{SO}(n)\) and then \(\text{SO}(n)/K\) is strongly isotropy irreducible, or, up to small number of exceptions, there exists a maximal subgroup \(L\) of \(\text{SO}(n)\) such that \(K\subset L\) and \(L/K\) is strongly isotropy irreducible. Here, \(L\) can be either U\((n/2)\) if \(G/K\) is Hermitian symmetric or \(\text{Sp}(1)\cdot \text{Sp}(n/4)\) if \(G/K\) is quaternionic symmetric. The authors show that all exceptions may be also derived from some general principles. As a consequence, the classification of the non- symmetric strongly isotropy irreducible quotients of the classical groups is read off from that of the irreducible symmetric spaces.
An other principal result is a characterization of the isotropy representations of the irreducible symmetric spaces in terms of the highest weights. It gives a new elegant method for classification of symmetric spaces. It may be regarded as a modern version of the Cartan’s first method of classifying symmetric spaces, based on the holonomy representation.


53C35 Differential geometry of symmetric spaces
53C30 Differential geometry of homogeneous manifolds
Full Text: DOI EuDML


[1] Besse, A.: Einstein manifolds. (Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10) Berlin Heidelberg New York: Springer 1987 · Zbl 0613.53001
[2] Borel, A.: On the curvature tensor of the Hermitian symmetric manifolds. Ann. Math.71, 508-521 (1960) · Zbl 0100.36101 · doi:10.2307/1969940
[3] Bourguignon, J.P., Karcher, H.: Curvature operators: Pinching estimates and geometric examples. Ann. Sci. Ec. Norm. Sup?r.11, 71-92 (1978) · Zbl 0386.53031
[4] Calabi, E., Vesentini, E.: On compact locally symmetric K?hler manifolds. Ann. Math.71, 472-507 (1960) · Zbl 0100.36002 · doi:10.2307/1969939
[5] Cartan, E.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. Fr.54, 214-264 (1926);55, 114-134 (1927) · JFM 52.0425.01
[6] Dynkin, E.B.: Maximal subgroups of the classical groups. Transl., Il., Ser., Am. Math. Soc.6, 111-244 (1957) · Zbl 0077.03403
[7] D’Atri, J.E., Ziller, W.: Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Am. Math. Soc.18, no. 215 (1979) · Zbl 0404.53044
[8] Guan, Z.: Curvature on the Hermitian symmetric spaces. Acta Math. Sin4, 270-283 (1988) · Zbl 0662.53053 · doi:10.1007/BF02560583
[9] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. (Pure Appl. Math., vol. 80) New York, London: Academic Press 1978 · Zbl 0451.53038
[10] Kostant, B.: A characterization of the classical groups. Duke Math. J.25, 107-123 (1958) · Zbl 0079.04301 · doi:10.1215/S0012-7094-58-02510-9
[11] Kostant, B.: On invariant skew tensors. Proc. Natl. Acad. Sci.42, 148-151 (1956) · Zbl 0073.17001 · doi:10.1073/pnas.42.3.148
[12] Kr?mer, M.: Eine Klassifikation bestimmter Untergruppen kompakter zusammenh?ngender Liegruppen. Commun. Algebra3, 691-737 (1975) · Zbl 0309.22013 · doi:10.1080/00927877508822068
[13] Manturov, O.V.: Homogeneous asymmetric Riemannian spaces with an irreducible group of motions. Dokl. Akad. Nauk SSSR141, 792-795 (1961) · Zbl 0188.26502
[14] Manturov, O.V.: Riemannian spaces with orthogonal and symplectic groups of motions and an irreducible group of rotations. Dokl. Akad. Nauk. SSSR141, 1034-1037 (1961) · Zbl 0196.54604
[15] Manturov, O.V.: Homogeneous Riemannian manifolds with irreducible isotropy group. Tr. Semin. Vector Tensor Anal.13, 68-145 (1966)
[16] Mok, N.: Uniqueness theorems of K?hler metrics of semipositive bisectional curvature on compact Hermitian symmetric spaces. Math. Ann.276, 177-204 (1987) · Zbl 0612.53029 · doi:10.1007/BF01450737
[17] Simons, J.: On the transitivity of holonomy systems. Ann. Math.76, 213-234 (1962) · Zbl 0106.15201 · doi:10.2307/1970273
[18] Wang, M., Ziller, W.: On the isotropy representation of a symmetric space. Rend. Semin. Mat., Torino, Fasc. Speciale 253-261 (1985)
[19] Wang, M., Ziller, W.: On normal homogeneous Einstein manifolds. Ann. Sci. Ec. Norm. Sup?r., IV. Ser.18, 563-633 (1985) · Zbl 0598.53049
[20] Wang, M., Ziller, W.: On isotropy irreducible Riemannian manifolds. Acta Math.166, 223-261 (1991) · Zbl 0732.53040 · doi:10.1007/BF02398887
[21] Wolf, J.A.: The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math.120, 59-148 (1968); correction, Acta Math.152, 141-142 (1984) · Zbl 0157.52102 · doi:10.1007/BF02394607
[22] Wolf, J.A.: Spaces of constant curvature, 4th ed. Wilmington: Publish or Perish 1977 · Zbl 0373.57025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.