# zbMATH — the first resource for mathematics

On polynomial-exponential equations. (English) Zbl 0805.11029
Let $$K$$ be an algebraic number field and $$S$$ a finite set of places on $$K$$ containing the archimedean places. For $$l=1, \dots,k$$, let $$P_ l \in K[X_ 1, \dots, X_ n]$$ be a polynomial and $$\underline \alpha_ l = (\alpha_{l1}, \dots, \alpha_{ln})$$ a vector of $$S$$-units. The authors consider the polynomial-exponential equation $\sum^ k_{l=1} P_ l({\mathbf x}) \underline \alpha_ l^{{\mathbf x}} = 0,$ where $$\underline \alpha^{\mathbf x}_ l = \alpha_{l1}^{x_ 1} \dots \alpha_{ln}^{x_ n}$$. For a partition $${\mathcal P} = \{P_ 1, \dots, P_ t\}$$ of $$\{1,\dots,k\}$$, denote by $${\mathfrak S} ({\mathcal P})$$ the set of solutions of $$(*)$$ with $$\sum_{l \in P_ j} P_ l ({\mathbf x}) \underline \alpha_ l^{{\mathbf x}} = 0$$ for $$j=1, \dots,t$$ and $$\sum_{l \in P} P_ l({\mathbf x}) \underline \alpha_ l^{{\mathbf x}} \neq 0$$ for each non-empty set $$P$$ properly contained in one of the sets of $${\mathcal P}$$. Further, let $$G({\mathcal P})$$ be the abelian group of $${\mathbf x} \in \mathbb{Z}^ n$$ such that $$\underline \alpha_ l^{\mathbf x} = \underline \alpha^{\mathbf x}_ m$$ for each pair $$l,m$$ belonging to the same set of $${\mathcal P}$$. A special case of a theorem of M. Laurent [J. Number Theory 31, 24-53 (1989; Zbl 0661.10027)] states that if $$G({\mathcal P}) = \{\text{\textbf{0}}\}$$, then $${\mathfrak S} ({\mathcal P})$$ is finite. The authors show that in this case, $${\mathfrak S} ({\mathcal P})$$ has cardinality at most $$2^ c$$, where $$c=20n^ 4 + ns^ 7 \cdot 2^{43d!(Dk)!}$$, with $$s$$ denoting the cardinality of $$S$$, $$d$$ the degree of $$K$$ and $$D={n + \delta \choose \delta}$$, $$\delta$$ being an upper bound for the total degrees of the polynomials $$P_ l$$.
In the proof, the authors use Schlickewei’s $$p$$-adic generalisation of Schmidt’s quantitative Subspace Theorem. The authors use an ingenious determinant argument to get rid of the dependence on the coefficients of the polynomial $$P_ l$$.

##### MSC:
 11D61 Exponential Diophantine equations 11D72 Diophantine equations in many variables
Full Text:
##### References:
  Bombieri, E., Vaaler, J.: On Siegel’s lemma. Invent. Math.73, 11-32 (1983) · Zbl 0533.10030  Dobrowolski, E.: On the maximal modulus of conjugates of an algebraic integer. Bull. Acad. Pol. Sci., S?r. Sci. Math. Astron. Phys.26 (no. 4), 291-292 (1978) · Zbl 0393.12003  Evertse, J.H.: On sums ofS-units and linear recurrences. Compos. Math.53, 225-244 (1984) · Zbl 0547.10008  Laurent, M.: ?quations exponentielles-polyn?mes et suites r?currentes lin?aires. Ast?risque147-148, 121-139 (1987)  Laurent, M.: ?quations exponentielles-polyn?mes et suites r?currentes lin?aires, II. J. Number Theory31, 24-53 (1989) · Zbl 0661.10027  Schlickewei, H.P.: Multiplicities of algebraic linear recurrences. Acta Mathematics (to appear) · Zbl 0789.11012  Schlickewei, H.P., Van der Poorten, A.J.: The growth conditions for recurrence sequences. Macquarie Univ. Math. Rep. 82-0041 North Ryde Australia 1982  Schlickewei, H.P., Van der Poorten, A.J.: Zeros of recurrence sequences (to appear) · Zbl 0724.11006  Schlickewei, H.P., Schmidt, W.M.: Intersections of recurrence sequences (to appear) · Zbl 0803.11010  Silverman, J.H.: The arithmetic of elliptic curves. (Grad. Texts Math., vol. 106 Berlin Heidelberg New York: Springer 1985 · Zbl 0613.14029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.