Kulpa, H. The Brouwer-Jordan theorem. (English) Zbl 0805.55003 Acta Univ. Carol., Math. Phys. 33, No. 2, 85-90 (1992). Let \(f: A\to M\), \(A,M\subset \mathbb{R}^ n\) be a mapping, then the author defines a degree function, such that \[ \deg (gf,K,x)= \sum\deg (f,K,M_ s)\cdot \deg(g,M_ s), \] where \(K\) is some compact set, \(M_ s\) is running through all bounded components of \(\mathbb{R}^ n\setminus M\), \(x\) a suitably chosen point. As a corollary the author deduces a function \(c(f)\) being defined for any continuous \(f: K\to K\) having the usual properties of a degree. Reviewer: F.W.Bauer (Frankfurt / Main) MSC: 55M25 Degree, winding number Keywords:maps between subsets of Euclidean space; degree function PDF BibTeX XML Cite \textit{H. Kulpa}, Acta Univ. Carol., Math. Phys. 33, No. 2, 85--90 (1992; Zbl 0805.55003) Full Text: EuDML