zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of $J\sb 0(z)- iJ\sb 1(z)$ and of Bessel functions $J\sb m(z)$ of any real order $m$. (English) Zbl 0805.65037
Eigenvalues of an infinite complex symmetric matrix are computed as limits of the eigenvalues of its leading submatrices. Convergence properties of this sequence are investigated, and the computation of the zeros of a combination of Bessel functions is used as a numerical example.

MSC:
65F15Eigenvalues, eigenvectors (numerical linear algebra)
65D20Computation of special functions, construction of tables
65H05Single nonlinear equations (numerical methods)
33C10Bessel and Airy functions, cylinder functions, ${}_0F_1$
WorldCat.org
Full Text: DOI
References:
[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. (1972) · Zbl 0543.33001
[2] Akhiezer, N. I.; Glazman, I. M.: Theory of linear operators in Hilbert space. (1981) · Zbl 0467.47001
[3] Arscott, F. M.: Periodic differential equations. (1964) · Zbl 0121.29903
[4] Bowman, F.: Introduction to bessels functions. (1958) · Zbl 0083.05602
[5] Carrier, G. F.: Gravity waves on water of variable depth. J. fluid mech. 24, 641-659 (1966) · Zbl 0149.45701
[6] Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM rev. 9, 24-82 (1967) · Zbl 0168.15004
[7] Grad, J.; Zakrajšek, E.: Method for evaluation of zeros of Bessel functions. J. inst. Math. appl. 11, 57-72 (1973) · Zbl 0252.33007
[8] Ikebe, Y.: The zeros of regular Coulomb wave functions and of their derivatives. Math. comp. 29, 878-887 (1975) · Zbl 0308.65015
[9] Ikebe, Y.; Kikuchi, Y.; Fujishiro, I.: Computing zeros and orders of Bessel functions. J. comput. Appl. math. 38, 169-184 (1991) · Zbl 0758.65011
[10] Kantrovich, L. V.; Akilov, G. P.: Functional analysis. (1982)
[11] Kato, T.: Perturbation theory for linear operators. (1984) · Zbl 0531.47014
[12] Krasnosel’skii, M. A.; Vainikko, G. M.; Zabreiko, P. P.; Rutitskii, Ya.B.; Stetsenko, V. Ya.: Approximate solution of operator equations. (1972)
[13] Macdonald, D. A.: The roots of $J0(z) - ij1(z)= 0$. Quart. appl. Math. 47, 375-378 (1989) · Zbl 0695.33006
[14] Magnus, W.; Oberhettinger, F.; Soni, R. P.: Formulas and theorems for the special functions of mathematical physics. (1966) · Zbl 0143.08502
[15] Nashed, M. Z.: Perturbations and approximations for generalized inverses and linear operator equations. Generalized inverses and applications, 325-396 (1976) · Zbl 0428.34008
[16] Rawlins, A. D.: Note on the roots of $f(z)=J0(z) - ij1(z)$. Quart. appl. Math. 47, 323-324 (1989) · Zbl 0689.33004
[17] Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; Garbow, B. S.; Ikebe, Y.; Klema, V. C.; Moler, C. B.: Matrix eigensystem routines--EISPACK guide. (1976)
[18] Synolakis, C. E.: The runup of solitary waves. J. fluid mech. 185, 523-545 (1987) · Zbl 0633.76021
[19] Synolakis, C. E.: On the roots of $f(z)=J0(z) - ij1(z)$. Quart. appl. Math. 46, 105-107 (1988) · Zbl 0652.33003
[20] Watson, G. N.: A treatise on the theory of Bessel functions. (1944) · Zbl 0063.08184
[21] Wilkinson, J. H.: The algebraic eigenvalue problem. (1965) · Zbl 0258.65037