×

Difference posets, effects, and quantum measurements. (English) Zbl 0806.03040

The authors recall definitions and basic properties of structures important in quantum theories (such as orthomodular poset, orthoalgebra, set of effects, difference poset) and connections between them. They state when a subset of a difference poset is orthomodular by means of triangle closedness and give several characterizations of observables with a Boolean range. This generalizes results of P. Lahti and M. Maczyński [J. Math. Phys. 33, 4133-4138 (1992; Zbl 0769.60101)].
They study Boolean powers (bounded, resp.) of difference posets: show that it is a difference poset and investigate properties of the embedding of a difference poset into its Boolean power and the existence and properties of product states on Boolean powers. Since a Boolean power is a special kind of a tensor product, its connection with quantum measurement is discussed.
Reviewer: J.Tkadlec (Praha)

MSC:

03G12 Quantum logic
06C15 Complemented lattices, orthocomplemented lattices and posets
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)

Citations:

Zbl 0769.60101
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alfsen, E. M. (1972).Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin. · Zbl 0209.42601
[2] Bade, W. G. (1955).Transactions of the American Mathematical Society,80, 345–360. · Zbl 0066.36202 · doi:10.1090/S0002-9947-1955-0073954-0
[3] Birkhoff, G., and von Neumann, J. (1936).Annals of Mathematics,37, 823–843. · JFM 62.1061.04 · doi:10.2307/1968621
[4] Busch, P., Lahti, P. J., and Mittelstaed, P. (1991).The Quantum Theory of Measurement, Springer-Verlag, Berlin.
[5] Davies, E. B., (1976).Quantum Theory of Open Systems, Academic Press, New York. · Zbl 0388.46044
[6] Davies, E. B., and Lewis, J. T. (1970).Communications in Mathematical Physics,17, 239–260. · Zbl 0194.58304 · doi:10.1007/BF01647093
[7] Cattaneo, G., and Nisticó, G. (1989).Fuzzy Sets and Systems,33, 165–190. · Zbl 0682.03036 · doi:10.1016/0165-0114(89)90239-X
[8] Drossos, C. A., and Markakis, G. (1994).Mathematica Slovaca,43, 1–19.
[9] Dunford, N., and Schwartz, J. T. (1971).Linear Operators, Part III, Wiley-Interscience, New York. · Zbl 0243.47001
[10] Dvurečenskij, A. (1993).Gleason’s Theorem and Its Applications, Kluwer, Dordrecht, Ister Science Press, Bratislava. · Zbl 0795.46045
[11] Dvurečenskij, A., and Riečan, B. (1994).International Journal of Theoretical Physics, to appear.
[12] Foulis, D. J., and Bennett, M. K. (n.d.). Tensor products of orthoalgebras,Order, to appear.
[13] Foulis, D., and Pták, P. (1993). On the tensor product of a Boolean algebra and an orthoalgebra, Preprint.
[14] Foulis, D., Greechie, R. J., and Rüttimann, G. T. (1992).International Journal of Theoretical Physics,31, 787–807. · Zbl 0764.03026 · doi:10.1007/BF00678545
[15] Grätzer, G. (1968).Universal Algebras, van Nostrand, Princeton, New Jersey. · Zbl 0182.34201
[16] Holevo, A. S. (1982).Probability and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam. · Zbl 0497.46053
[17] Kalmbach, G. (1983).Orthomodular Lattices, Academic Press, New York. · Zbl 0512.06011
[18] Kolmogorov, A. N. (1933).Grundbegriffe der Wahrscheinlickhkeitsrechnung, Berlin. · JFM 59.1154.01
[19] Kôpka, F. (1992).Tatra Mountains Mathematical Publications,1, 83–87.
[20] Kôpka, F., and Chovanec, F. (1994).Mathematica Slovaca,44, 21–34.
[21] Lahti, P., and Maczyński, M. J. (1992).Journal of Mathematical Physics,33, 4133–4138. · Zbl 0769.60101 · doi:10.1063/1.529811
[22] Luczak, A. (n.d.). Instruments on von Neumann algebras, Preprint, Lodz University.
[23] Ludwig, G. (1983).Foundations of Quantum Mechanics, Vol. 1, Springer-Verlag, New York. · Zbl 0509.46057
[24] Mackey, G. W. (1963).Mathematical Foundations of Quantum Mechanics, Benjamin, New York. · Zbl 0114.44002
[25] Mushtari, D. K. (1989).Izvestiya Vuzov matematika,8, 44–52 [in Russian].
[26] Mushtari, D. K., and Matvejchuk, M. S. (1985).Soviet Mathematics Doklady,32, 36–39.
[27] Navara, M., and Pták, P. (n.d.). Difference posets and orthoalgebras, submitted.
[28] Pták, P. (1986).Demonstratio Mathematica,19, 349–357.
[29] Pták, P., and Pulmannová, S. (1991).Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht. · Zbl 0743.03039
[30] Pulmannová, S. (1993a).Tatra Mountains Mathematical Publications,3, 89–100.
[31] Pulmannová, S. (1993b).Reports on Mathematical Physics,32, 235–250. · Zbl 0803.03042 · doi:10.1016/0034-4877(93)90017-9
[32] Pulmannová, S. (1994). Quantum measurements and quantum logics, Preprint SAV.Journal of Mathematical Physics, to appear. · Zbl 0812.03034
[33] Randall, C., and Foulis, D. (1979). New definitions and theorems, University of Massachusetts Mimeographed Notes, Amherst, Massachusetts, Autumn 1979.
[34] Randall, C., and Foulis, D. (1981). Empirical logic and tensor products, inInterpretations and Foundations of Quantum Theory, H. Neumann, ed., Vol. 5, Wissenscaftsverlag, Bibliographisches Institut, Mannheim, pp. 9–20. · Zbl 0495.03041
[35] Sikorski, R. (1964).Boolean Algebras, Springer-Verlag, Berlin. · Zbl 0123.01303
[36] Varadarajan, V. S. (1985).Geometry of Quantum Theory, Springer-Verlag, Berlin. · Zbl 0581.46061
[37] Von Neumann, J. (1932).Mathematische Grundlagen der Quantenmechanik, Springer-Verlag, Berlin. · JFM 58.0929.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.