Alinhac, S.; Baouendi, M. S. A counterexample to strong uniqueness for partial differential equations of Schrödinger’s type. (English) Zbl 0806.35023 Commun. Partial Differ. Equations 19, No. 9-10, 1727-1733 (1994). From the introduction: We consider the question of strong uniqueness from the origin for smooth solutions of equations of the type \(\Delta u + a \cdot \nabla u = 0\), or of differential inequalities of the form \(| \Delta u | \leq V | \nabla u |\). We are interested in the singular limiting case where \(a\) or \(V\) behaves like \(C/ | x |\). For any \(C>1\), we construct an example in the plane of a flat complex valued function \(u\) satisfying \(| \Delta u | \leq {C \over | x |} | \nabla u |\) and \(\text{supp} u = \mathbb{R}^ 2\). Cited in 1 ReviewCited in 14 Documents MSC: 35J15 Second-order elliptic equations 35A07 Local existence and uniqueness theorems (PDE) (MSC2000) Keywords:strong uniqueness; differential inequalities PDFBibTeX XMLCite \textit{S. Alinhac} and \textit{M. S. Baouendi}, Commun. Partial Differ. Equations 19, No. 9--10, 1727--1733 (1994; Zbl 0806.35023) Full Text: DOI References: [1] DOI: 10.2307/2006972 · Zbl 0516.35018 · doi:10.2307/2006972 [2] Alinhac S., Ann. Sci. Eco. Nor. Sup. 13 pp 385– (1980) [3] DOI: 10.2307/2374175 · Zbl 0425.35098 · doi:10.2307/2374175 [4] Aronszajn N., J. Math. Pures Appl. 36 pp 235– (1957) [5] Cohen, P. 1960. The non uniqueness of the Cauchy problem. ONR Techn. Report 93. 1960, Stanford U. [6] Cordes H., Akad.Wiss Göttingen II a pp 230– (1956) [7] Hörmander L., Lect. Notes in Math. 459 pp 36– (1975) [8] DOI: 10.1080/03605308308820262 · Zbl 0546.35023 · doi:10.1080/03605308308820262 [9] DOI: 10.1016/0001-8708(86)90096-4 · Zbl 0627.35008 · doi:10.1016/0001-8708(86)90096-4 [10] DOI: 10.2307/1971205 · Zbl 0593.35119 · doi:10.2307/1971205 [11] DOI: 10.1080/03605309208820871 · Zbl 0810.35005 · doi:10.1080/03605309208820871 [12] DOI: 10.1002/cpa.3160140331 · Zbl 0163.13103 · doi:10.1002/cpa.3160140331 [13] Regbaoui, R. 1993. Prolongement unique pour less opérateurs de Schrödinger. Thése. 1993, Université de Rennes. [14] T.Wolff : A Counterexample ina unique continuation problem, to appear, Comm. Analysis and Geom. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.