zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple homoclinic orbits for a class of conservative systems. (English) Zbl 0806.58018
A class of autonomous, second order classical hamiltonians $H = {1\over 2} \vert p \vert\sp 2 - {1\over 2}\vert q\vert\sp 2 + W(q)$, $(p,q) \in \bbfR\sp n$, is considered, where essentially $a\vert q\vert\sp \alpha \leq W(q) \leq b\vert q\vert\sp \alpha$ for some $\alpha > 2$. The authors show that given a “pinching condition” $b/a < 2\sp{(\alpha - 2)/2}$ there exist at least two orbits homoclinic to the origin. Moreover, if $W$ is even, then there are indeed $n$ such homoclinics. They also have results for intermediate multiplicities. Since $H$ is independent of time, this multiplicity has nothing to do with the splitting of stable and unstable manifolds (which would lead to infinitely many homoclinics). The homoclinics here could all be degenerate. The proof is variational. It is possible to project out the radial direction so that it suffices to find critical points of the functional $F(u) = {1\over 2} \vert u \vert\sp 2\sb{H\sp{1,2}} - \int\sp \infty\sb{- \infty} W(u)$ on the sphere $\{\vert u\vert = 1\}$. Lusternik-Schnirelman category and a comparison argument then yield the minimum number of critical points, respectively homoclinic orbits.

MSC:
37J99Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
58E05Abstract critical point theory
70H05Hamilton’s equations
WorldCat.org
Full Text: Numdam EuDML
References:
[1] A. Ambrosetti , Critical points and nonlinear variational problems , Mem. Soc. Math. France , 120 , No. 49 ( 1992 ). Numdam | MR 1164129 | Zbl 0766.49006 · Zbl 0766.49006 · numdam:MSMF_1992_2_49__1_0 · eudml:94900
[2] A. Ambrosetti - M.L. Bertotti , Homoclinics for a second order conservative systems , in Partial Differential Equations and Related Subjects , M. Miranda Ed. Longman ( 1992 ), pp. 21 - 37 . MR 1190931 | Zbl 0804.34046 · Zbl 0804.34046
[3] A. Ambrosetti - V. COTI ZELATI, Multiplicté des orbites homoclines pour des systémes conservatifs, Compte Rendus Acad. Sci. Paris , 314 ( 1992 ), pp. 601 - 604 . MR 1158744 | Zbl 0780.49008 · Zbl 0780.49008
[4] A. Ambrosetti - V. COTI ZELATI - I. EKELAND, Symmetry breaking in Hamiltonian systems , J. Diff. Equat. , 67 ( 1987 ), pp. 165 - 184 . MR 879691 | Zbl 0606.58043 · Zbl 0606.58043 · doi:10.1016/0022-0396(87)90144-6
[5] A. Ambrosetti - G. MANCINI, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories , J. Diff. Equat. , 43 ( 1982 ), pp. 249 - 256 . MR 647065 | Zbl 0492.70018 · Zbl 0492.70018 · doi:10.1016/0022-0396(82)90093-6
[6] A. Bahri - H. Berestycki , A perturbation method in critical point theory and applications , Trans. Amer. Math. Soc. , 267 ( 1981 ), pp. 1 - 32 . MR 621969 | Zbl 0476.35030 · Zbl 0476.35030 · doi:10.2307/1998565
[7] S.V. Bolotin , The existence of homoclinic motions , Vestnik Moscow Univ. Ser. I, Math. Mekh. , 6 ( 1983 ), pp. 98 - 103 ; Moscow Univ. Math. Bull. , 38 - 6 ( 1983 ), pp. 117 - 123 . MR 728558 | Zbl 0549.58019 · Zbl 0549.58019
[8] V. Coti Zelati - I. Ekeland - E. Seré , A variational approach to homoclinic orbits in Hamiltonian systems , Math. Ann. , 288 ( 1990 ), pp. 133 - 160 . MR 1070929 | Zbl 0731.34050 · Zbl 0731.34050 · doi:10.1007/BF01444526 · eudml:164728
[9] V. Coti Zelati - P.H. Rabinowitz , Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials , Jour. Am. Math. Soc. , 4 ( 1991 ), pp. 693 - 727 . MR 1119200 | Zbl 0744.34045 · Zbl 0744.34045 · doi:10.2307/2939286
[10] I. Ekeland - J. M. LASRY, On the number of closed trajectories for a Hamiltonian flow on a convex energy surface , Ann. Math. , 112 ( 1980 ), pp. 283 - 319 . MR 592293 | Zbl 0449.70014 · Zbl 0449.70014 · doi:10.2307/1971148
[11] H. Hofer - K. WYSOCKI, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems , Math. Ann. , 288 ( 1990 ), pp. 483 - 503 . MR 1079873 | Zbl 0702.34039 · Zbl 0702.34039 · doi:10.1007/BF01444543 · eudml:164745
[12] V.K. Melnikov , On the stability of the center for periodic perturbations , Trans. Moscow Math. Soc. , 12 ( 1963 ), p. 1 - 57 . MR 156048 | Zbl 0135.31001 · Zbl 0135.31001
[13] R. Palais - S. SMALE, A generalized Morse theory , Bull. Amer. Math. Soc. , 70 ( 1964 ), p. 165 - 171 . Article | MR 158411 | Zbl 0119.09201 · Zbl 0119.09201 · doi:10.1090/S0002-9904-1964-11062-4 · http://minidml.mathdoc.fr/cgi-bin/location?id=00232773
[14] H. Poincaré , Les méthodes nouvelles de la mécanique céleste , Gauthier-Villars , Paris ( 1897 - 1899 ). JFM 25.1847.03 · Zbl 25.1847.03
[15] P.H. Rabinowitz , Homoclinic orbits for a class of Hamiltonian systems , Proceed. Royal Soc. Edinburgh , 114-A ( 1990 ), pp. 33 - 38 . MR 1051605 | Zbl 0705.34054 · Zbl 0705.34054 · doi:10.1017/S0308210500024240
[16] P.H. Rabinowitz - K. Tanaka , Some results on connecting orbits for a class of Hamiltonian systems , Math. Zeit. , to appear. MR 1095767 | Zbl 0707.58022 · Zbl 0707.58022 · doi:10.1007/BF02571356 · eudml:174238
[17] E. Seré , Existence of infinitely many homoclinic orbits in Hamiltonian systems , Math. Z. , 209 ( 1992 ), pp. 27 - 42 . Article | MR 1143210 | Zbl 0725.58017 · Zbl 0725.58017 · doi:10.1007/BF02570817 · eudml:174347
[18] E. Seré , Homoclinic orbits on compact hypersurfaces in R2N of restricted contact type , preprint CEREMADE , 1992 .
[19] K. Tanaka , Homoclinic orbits in a first order superquadratic Hamiltonian system: convergence of subharmonic orbits, to appear . MR 1137618 | Zbl 0787.34041 · Zbl 0787.34041 · doi:10.1016/0022-0396(91)90095-Q