zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The conformal map $z\to z\sp 2$ of the hodograph plane. (English) Zbl 0806.65005
The author studies the map of a curve $z(t)= u(t)+ iv(t)$ onto $w(t)= \int z\sp 2(s)ds$ with appropriately chosen starting point for the integration. The latter curves are shown to have very convenient properties for differential-geometric computation since $w'= (u\sp 2- v\sp 2)+ 2uvi$. If $u$, $v$ are polynomials of degree $n$, the components of $w$ are polynomials of degree $2n+1$. Special attention is given to Bézier control of the curves $w$. The author complains about the lack of books using complex methods for real geometry. To his list of books should be added the classic “Inversive geometry” by {\it F. Morley} and {\it F. V. Morley} (1933; Zbl 0009.02908) and more recent books by {\it J. L. Kavanau} [e.g. Structural equation geometry (1983; Zbl 0541.51001) and Curves and symmetry (1982; Zbl 0491.51001)].

65D17Computer aided design (modeling of curves and surfaces)
51N20Euclidean analytic geometry
Full Text: DOI
[1] Bézier, P.: The mathematical basis of the UNISURF CAD system. (1986)
[2] Bieberbach, L.: Conformal mapping. (1953) · Zbl 0050.08401
[3] Boyer, C. B.; Merzbach, U. C.: A history of mathematics. (1989)
[4] Degen, W. L. F.: Personal communication. (1991)
[5] Eves, H.: 6th editionan introduction to the history of mathematics. An introduction to the history of mathematics (1990) · Zbl 0749.01015
[6] Farin, G.: Curves and surfaces for computer aided geometric design. (1988) · Zbl 0694.68004
[7] Farouki, R. T.: Pythagorean-hodograph curves in practical use. Geometry processing for design and manufacturing, 3-33 (1992) · Zbl 0770.41017
[8] Farouki, R. T.: Watch your (parametric) speed!. The mathematics of surfaces IV (1992)
[9] Farouki, R. T.; Neff, C. A.: Analytic properties of plane offset curves, algebraic properties of plane offset curves. Computer aided geometric design 7, 83-127 (1990) · Zbl 0718.53003
[10] Farouki, R. T.; Neff, C. A.: Hermite interpolation by Pythagorean-hodograph quintics. IBM research report RC19234 (1992) · Zbl 0847.68125
[11] Farouki, R. T.; Rajan, V. T.: Algorithms for polynomials in Bernstein form. Computer aided geometric design 5, 1-26 (1988) · Zbl 0648.65007
[12] Farouki, R. T.; Sakkalis, T.: Pythagorean hodographs. IBM J. Res. develop. 34, 736-752 (1990)
[13] Farouki, R. T.; Sakkalis, T.: Real rational curves are not ”unit speed”. Computer aided geometric design 8, 151-157 (1991) · Zbl 0746.41019
[14] Fässler, A.: Multiple Pythagorean number triples. Amer. math. Monthly 98, 505-517 (1991) · Zbl 0743.11014
[15] Hausdorff, F.: 3rd editionset theory. Set theory (1978)
[16] Henrici, P.: Applied and computational complex analysis. (1974) · Zbl 0313.30001
[17] Kreyszig, E.: Differential geometry. (1959) · Zbl 0088.13901
[18] Kubota, K. K.: Pythagorean triples in unique factorization domains. Amer. math. Monthly 79, 503-505 (1972) · Zbl 0242.10008
[19] Rouse, H.: Advanced mechanics of fluids. (1959) · Zbl 0091.17601
[20] Sakkalis, T.; Farouki, R. T.: Algebraically rectifiable parametric curves. Computer aided geometric design 10, 551-569 (1992) · Zbl 0808.65010
[21] Salmon, G.: 3rd editiona treatise on the higher plane curves. A treatise on the higher plane curves (1879)
[22] Schwerdtfeger, H.: Geometry of complex numbers. (1979) · Zbl 0484.51007
[23] Siebeck, H.: Über die graphische darstellung imaginärer funktionen. J. reine angew. Math. 55, 221-253 (1857) · Zbl 055.1458cj
[24] Smith, D. E.: History of mathematics. (1958) · Zbl 0081.00411
[25] Wessel, C.: Om directionens analytiske betegning, et forsøg, anvendt fornemmelig til plane og sphaeriske polygoners opløsning. Nye samling af det kongelige danske videnskabernes selskabs skrifter 5, 496-518 (1799)
[26] Wessel, C.: Om directionens analytiske betegning, et forsøg, anvendt fornemmelig til plane og sphaeriski polygoners opløsning. Nye samling af det kongelige danske videnskabernes selskabs skrifter 5, 55-66 (1959)
[27] Zwikker, C.: The advanced geometry of plane curves and their applications. 1963DoverNew yorkadvanced plane geometry (1963) · Zbl 0151.26501