×

zbMATH — the first resource for mathematics

Inexact trust region method for large sparse nonlinear least squares. (English) Zbl 0806.65060
The paper presents an inexact trust region method for large sparse nonlinear least squares which uses a bidiagonalized linear least squares algorithm for direction determination. The numerical results show that this method is most efficient in comparison with other tested trust region methods for nonlinear least squares.

MSC:
65K05 Numerical mathematical programming methods
90C20 Quadratic programming
Software:
LSQR; minpack
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] G. Golub, W. Kahan: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. 2 (1965), 205-224. · Zbl 0194.18201 · doi:10.1137/0702016
[2] J. J. More B. S. Garbow, K. E. Hillstrom: Testing unconstrained optimization software. ACM Trans. Math. Software 7 (1981), 17-41. · Zbl 0454.65049 · doi:10.1145/355934.355936
[3] J. E. Dennis, H. H. W. Mei: An Unconstrained Optimization Algorithm which Uses Function and Gradient Vlues. Report No. TR-75-246. Dept. of Computer Sci., Cornell University 1975.
[4] C. C. Paige: Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal. 11 (1974), 197-209. · Zbl 0244.65023 · doi:10.1137/0711019
[5] C. C. Paige, M. A. Saunders: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8 (1982), 43-71. · Zbl 0478.65016 · doi:10.1145/355984.355989
[6] M. J. D. Powell: Convergence properties of a class of minimization algoritms. Non-linear Programming 2 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, Academic Press, London 1975.
[7] G. A. Shultz R. B. Schnabel, R. H. Byrd: A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22 (1985), 47-67. · Zbl 0574.65061 · doi:10.1137/0722003
[8] T. Steihaug: The conjugate gradient method and trust regions in large-scale optimization. SIAM J. Numer. Anal. 20 (1983), 626-637. · Zbl 0518.65042 · doi:10.1137/0720042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.