×

zbMATH — the first resource for mathematics

Asymptotic stability of controlling uncertain dynamical systems. (English) Zbl 0806.93044
From the introduction: Asymptotic stabilization of a class of uncertain dynamical systems is considered. The required information about uncertain dynamics in the system is merely that the uncertainties are bounded by a known function of the system state.

MSC:
93D09 Robust stability
93C15 Control/observation systems governed by ordinary differential equations
93D20 Asymptotic stability in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/0321014 · Zbl 0503.93049 · doi:10.1137/0321014
[2] DOI: 10.1109/TAC.1982.1102862 · Zbl 0469.93043 · doi:10.1109/TAC.1982.1102862
[3] DOI: 10.1115/1.3143815 · Zbl 0637.93020 · doi:10.1115/1.3143815
[4] DOI: 10.1080/00207178708933831 · Zbl 0623.93023 · doi:10.1080/00207178708933831
[5] DOI: 10.1109/TAC.1981.1102785 · Zbl 0473.93056 · doi:10.1109/TAC.1981.1102785
[6] DOI: 10.1109/TAC.1979.1102073 · Zbl 0416.93076 · doi:10.1109/TAC.1979.1102073
[7] DOI: 10.1115/1.2896461 · Zbl 0745.93063 · doi:10.1115/1.2896461
[8] DOI: 10.1016/0005-1098(86)90033-6 · Zbl 0587.93054 · doi:10.1016/0005-1098(86)90033-6
[9] SLOTINE J. J., Applied Nonlinear Control (1991) · Zbl 0753.93036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.