zbMATH — the first resource for mathematics

Unimodular lattices over real quadratic fields. (English) Zbl 0807.11021
We investigate integral even unimodular lattices \(L\) in a vector space with a totally positive definite quadratic form, defined over a real quadratic field \(F\). We give explicit constructions of a number of such lattices in dimension 4, for indeterminate field discriminant \(d\) (only depending on \(d\bmod 24\), i.e. on the ramification of 2 and 3 in \(F\)). The lattices we construct here have large automorphism groups. In most cases, the full orthogonal group \(O(L)\) is known (and essentially independent of the field). This is true in particular for the so-called reflective lattices which have a root system of maximal rank. As an application we obtain the full classification (essentially independent of the use of computers) of all even unimodular lattices in dimension 4 over the first 11 real quadratic fields with discriminants \(d=5,8,12,13,17,21,24,28,29,33,37\).

11E12 Quadratic forms over global rings and fields
11E41 Class numbers of quadratic and Hermitian forms
Full Text: DOI EuDML
[1] [Ban] Bannai, E.: Positive definite unimodular lattices with trivial automorphism groups. Mem. Amer. Math. Soc.85 (no. 429), iv+70pp (1990) · Zbl 0702.11037
[2] [Bie] Biermann, J.: Gitter mit kleiner Automorphismengruppe in Geschlechtern von \(\mathbb{Z}\)-Gittem mit positiv-definiter quadratischer Form. Dissertation, Göttingen (1981) · Zbl 0486.10018
[3] [B-S] Blaschke, B., Scharlau, R.: Reflective integral quadratic forms. (in preparation). · Zbl 0853.11053
[4] [Bor] Borcherds, R.: The Leech lattice and other lattices. Ph.D. Dissertation, University of Cambridge (1984)
[5] [Bou] Bourbaki, N.: Groupes et Algèbres de Lie, Chap. IV, V et VI. Paris: Hermann, 1968
[6] [C-H] Costello, P.J., Hsia, J.S.: Even unimodular 12-dimensional quadratic forms over \(\mathbb{Q}\left( {\sqrt 5 } \right)\) . Adv. Math.64, 241–278 (1987) · Zbl 0622.10015
[7] [C-S1] Conway, J.H., Sloane, N.J.: Sphere packings, lattices and groups. Berlin Heidelberg New York: Springer 1988
[8] [C-S2] Conway, J.H., Sloane N.J.A.: Low dimensional lattices. I. Quadratic forms of small determinant. Proc. R. Soc. Lond., Ser. A418, 17–41 (1988) · Zbl 0655.10020
[9] [Ha] Habdank, B.: Gerade unimodulare Gitter in Dimension 4 über reell-quadratischen Zahlkörpern. Diplomarbeit, Bielefeld (1990)
[10] [Hs] Hsia, J.S.: Even positive definite unimodular quadratic forms over real quadratic fields. Rocky M. J. Math.19, 725–733 (1989) · Zbl 0708.11023
[11] [H-H] Hsia, J.S., Hung, D.C.: Even unimodular 8-dimensional quadratic forms over \(\mathbb{Q}\left( {\sqrt 2 } \right)\) . Math. Ann.283, 367–374 (1989) · Zbl 0643.10013
[12] [Hum] Humphreys, J.E.: Introduction to Lie algebras and representation theory, third printing Berlin Heidelberg New York: Springer 1980 · Zbl 0447.17002
[13] [Hu] Hung, D.C.: Even positive definite unimodular quadratic forms over \(\mathbb{Q}\left( {\sqrt 3 } \right)\) . Math. Com. pvt.57, 351–368 (1991) · Zbl 0731.11024
[14] [Ki] Kitaoka, Y.: Class numbers of quadratic forms over real quadratic fields. Nagoya Math. J.66, 89–98 (1977) · Zbl 0352.10009
[15] [Kn] Kneser, M.: Klassenzahlen definiter quadratischer Formen. Arch. Math.8, 241–250 (1957) · Zbl 0078.03801
[16] [Mi1] Mimura, Y.: On 2-lattices over real quadratic integers. Math. Sem. Notes Kobe Univ.7, 327–342 (1979) · Zbl 0425.10023
[17] [Mi2] Mimura, Y.: On the class number of a unit lattice over a ring of real quadratic integers. Nagoya Math. J.92, 89–106 (1983) · Zbl 0506.10021
[18] [OM] O’Meara, O.T.: Introduction to Quadratic Forms. Berlin Heidelberg New York: Springer 1971
[19] [Pa] Pahlkötter, V.: Klassifikation der unimodularen Gitter in den Dimensionen <=4 über \(\mathbb{Q}\left( {\sqrt 3 } \right)\) und \(\mathbb{Q}\left( {\sqrt 6 } \right)\) . Diplomarbeit, Bielefeld (1992)
[20] [Pe] Peters, M.: Einklassige Geschlechter von Einheitsformen in totalreellen algebraischen Zahlkörpern. Math. Ann.226, 117–120 (1977) · Zbl 0419.10022
[21] [Pf1] Pfeuffer, H.: Quadratsummen in totalreellen algebraischen Zahlkörpern. J. Reine Angew. Math.249, 208–216 (1971) · Zbl 0218.12013
[22] [Pf2] Pfeuffer, H.: Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern. J. Number Theory4, 371–411 (1971) · Zbl 0218.12012
[23] [Pf3] Pfeuffer, H.: Über die reelle Spiegelungsgruppe 4 und die Klassenzahl der sechsdimensionalen Einheitsform. Arch. Math.31, 126–132 (1978) · Zbl 0383.10014
[24] [Pf4] Pfeuffer, H.: On a conjecture about class numbers of totally positive quadratic forms in totally real algebraic number fields. J. Number Theory11, 188–196 (1979) · Zbl 0408.10013
[25] [Sa] Salamon, R.: Die Klassen im Geschlecht vonx 1 2 +x 2 2 +x 3 2 undx 1 2 +x 2 2 +x 3 2 +x 4 2 über \(\mathbb{Z}[\sqrt 3 ]\) . Arch. Math.20, 523–530 (1969) · Zbl 0188.10502
[26] [Sh] Shian, H.: The classes of some positive definite unimodular lattices over \(Z[\sqrt 3 ]\) and \(Z[\sqrt 6 ]\) . Chin. Ann. Math.9, 50–67 (1988) · Zbl 0683.10022
[27] [S-W] Scharlau, R., Walhorn, C.: Integral lattices and hyperbolic reflection groups. (Preprint, November 1991); Astérisque (to appear) · Zbl 0815.20039
[28] [SP] Schulze-Pillot, R.: An algorithm for computing genera of ternary and quaternary quadratic forms. Proc. of the Int. Symp. on Symbolic and Algebraic Computation, Bonn 1991 · Zbl 0925.11045
[29] [Ta1] Takada, I.: On the classification of definite unimodular lattices over the ring of integers in \(Q\left( {\sqrt 2 } \right)\) . Math. Japonica30, 423–433 (1985) · Zbl 0572.10016
[30] [Ta2] Takada, I.: On the genera and the class number of unimodular lattices over the ring of integers of real quadratic fields. J. Number Theory36, 373–379 (1990) · Zbl 0708.11024
[31] [Ve] Venkov, B.B.: On the classification of integral even unimodular 24-dimensional quadratic forms. Proc. Steklov Inst. Math.4, 63–74 (1980) · Zbl 0443.10021
[32] [Wa1] Watson, G.L.: The class-number of a positive quadratic form. Proc. Lond. Math. Soc.13, 549–576 (1963) · Zbl 0122.05802
[33] [Wa2] Watson, G.L.: Positive quadratic forms with small class-numbers. Proc. Lond. Math. Soc.13, 577–592 (1963) · Zbl 0113.26906
[34] [Wa3] Watson, G.L.: One-class genera of positive quadratic forms in at least five variables. Acta Arith.XXVI, 309–327 (1975) · Zbl 0271.10025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.