Beck, Jonathan Braid group action and quantum affine algebras. (English) Zbl 0807.17013 Commun. Math. Phys. 165, No. 3, 555-568 (1994). The purpose of this paper is to establish explicitly the isomorphism between the quantum enveloping algebra \(U_ q (\widehat{g})\) of Drinfeld and Jimbo (\(\widehat{g}\) an untwisted affine Kac-Moody algebra) and the “new realization” of V. G. Drinfeld [Sov. Math., Dokl. 36, 212- 216 (1988); translation from Dokl. Akad. Nauk SSSR 269, 13-17 (1987; Zbl 0667.16004)]. (The last form makes the study of finite dimensional representations easier.)The author uses the action on \(U_ q (\widehat{g})\) of the braid group associated with the extended affine Weyl group of \(\widehat{g}\). This action fixes the Heisenberg subalgebra pointwise. Loop-like generators of the algebra are obtained as translations of the usual Drinfeld-Jimbo generators. They satisfy the relations of Drinfeld’s new realization. Coproduct formulas are given and a PBW type basis is constructed. Reviewer: Yu.Bespalov (Kiev) Cited in 5 ReviewsCited in 127 Documents MSC: 17B37 Quantum groups (quantized enveloping algebras) and related deformations 17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 16W30 Hopf algebras (associative rings and algebras) (MSC2000) 20F36 Braid groups; Artin groups Keywords:quantum affine algebras; quantum enveloping algebra; braid group; Drinfeld’s new realization Citations:Zbl 0667.16004 PDF BibTeX XML Cite \textit{J. Beck}, Commun. Math. Phys. 165, No. 3, 555--568 (1994; Zbl 0807.17013) Full Text: DOI arXiv References: [1] [B] Bourbaki, N.: Groupes et algèbres de Lie. Ch. 4, 5, 6, Paris: Hermann, 1968 · Zbl 0186.33001 [2] [Da] Damiani, I.: A basis of type PBW for the quantum algebra of \(\widehat{\mathfrak{s}\mathfrak{l}_2 }\) . Journal of Algebra161, 291–310 (1993) · Zbl 0803.17003 [3] [D] Drinfeld, V.G.: Quantum groups. Proc. ICM Berkeley1 (1986), pp. 789–820 [4] [D2] Drinfeld, V.G.: A new realization of Yangians and Quantized Affine Algebras. Sov. Math. Dokl.36, 212–216 (1988) [5] [DC-K] De Concini, C., Kac, V.G.: Representations of quantum groups at roots of 1. Progress in Math.92, Boston: Birkhäuser, 1990, pp. 471–506 · Zbl 0738.17008 [6] [Dc-K-P] De Concini, C., Kac, V.G., Procesi, C.: Quantum coadjoint action. J. AMS5, 151–190 (1992) · Zbl 0747.17018 [7] [DC-K-P2] De Concini, C., Kac, V.G., Procesi, C.: Some remarkable degenerations of quantum groups. Commun. Math. Phys.157, 405–427 (1993) · Zbl 0795.17006 [8] [G-K] Gabber, O., Kac, V.G.: On defining relations of certain infinite dimensional Lie algebras. Bull. AMS5, 185–189 (1981) · Zbl 0474.17007 [9] [G] Garland, H.: The Arithmetic Theory of Loop Algebras. J. Algebra53, 480–551 (1978) · Zbl 0383.17012 [10] [H] Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge: Cambridge University Press, 1990 · Zbl 0725.20028 [11] [J] Jimbo, M.: Aq-difference analog ofU(g) and the Yang-Baxter equation. Lett. Math. Physics10, 63–69 (1985) · Zbl 0587.17004 [12] [K] Kac, V.G.: Infinite Dimensional Lie Algebras. 3rd. edn. Cambridge: Cambridge University Press, 1990 · Zbl 0716.17022 [13] [K-R] Kirillov, A.N., Reshetikhin, N.:q-Weyl group and a multiplicative formula for universalR-matrices. Commun. Math. Phys.134, 421–431 (1990) · Zbl 0723.17014 [14] [L-S] Levendorskii, S., Soibelman, Y.: Some applications of the quantum Weyl groups. J. Geom. Phys.7, 241–254 (1990) · Zbl 0729.17009 [15] [Lor] Levendorskii, S., Soibelman, Y., Stukopin, V.: Quantum Weyl Group and Universal QuantumR-matrix for Affine Lie AlgebraA 1 (1) . Lett. in Math. Physics27, 253–264 (1993) · Zbl 0776.17011 [16] [L] Lusztig, G.: Introduction to Quantum Groups. Boston: Birkhäuser, 1993 · Zbl 0788.17010 [17] [L2] Lusztig, G.: Affine Hecke algebras and their graded version. AMS2, 599–625 (1989) · Zbl 0715.22020 [18] [L3] Lusztig, G.: Some examples of square integrable representations of semisimplep-adic groups. Trans. AMS277, 623–653 (1983) · Zbl 0526.22015 [19] [L4] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. in Math.70, 237–249 (1988) · Zbl 0651.17007 [20] [L5] Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. AMS3, 257–296 (1990) · Zbl 0695.16006 [21] [Ro] Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra. Commun. Math. Phys.117, 581–593 (1988) · Zbl 0651.17008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.