×

zbMATH — the first resource for mathematics

The Milnor fiber of a generic arrangement. (English) Zbl 0807.32029
Let \(V\) be the union of \(m\) hyperplanes through the origin of \(\mathbb{C}^ n\) such that \(m > n\) and no \(n\) of these hyperplanes share a line. The authors compute the complex cohomology of the Milnor’s fibre and the characteristic polynomial of the monodromy of the (non-isolated) singularity of \(V\) at the origin.

MSC:
32S55 Milnor fibration; relations with knot theory
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Artal-Bartolo, E., Sur le premier nombre de Betti de la fibre de Milnor du cône sur une courbe projective plane et son rapport avec la position des points singuliers,Preprint.
[2] Brieskorn, E., Sur les groupes de tresses, inSéminaire Bourbaki 1971/72, Lecture Notes in Math. 317, pp. 21–44, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[3] Dimca, A., On the Milnor fibrations of weighted homogeneous polynomials,Preprint. · Zbl 0726.14002
[4] Esnault, H., Fibre de Milnor d’un cône sur une courbe plane singulière,Invent. Math. 68 (1982), 477–496. · Zbl 0489.14009
[5] Hattori, A., Topology of C n minus a finite number of affine hyperplanes in general position,J. Fac. Sci. Tokyo 22 (1975), 205–219. · Zbl 0306.55011
[6] Milnor, J.,Singular Points of Complex Hypersurfaces, Princeton Univ. Press, Princeton, N.J., 1968. · Zbl 0184.48405
[7] Milnor, J. andOrlik, P., Isolated singularities defined by weighted homogeneous polynomials,Topology 9 (1970), 385–393. · Zbl 0204.56503
[8] Orlik, P.,Introduction to Arrangements,CBMS Lecture Notes 72, Amer. Math. Soc., Providence, R.I., 1989. · Zbl 0722.51003
[9] Orlik, P. andSolomon, L., Singularities I: Hypersurfaces with an isolated singularity,Adv. in Math. 27 (1978), 256–272. · Zbl 0369.14002
[10] Randell, R., On the topology of non-isolated singularities, inProceedings of the Georgia Topology Conference 1977, pp. 445–473, Academic Press, New York, 1979.
[11] Siersma, D., Singularities with critical locus a 1-dimensional complete intersection and transversal typeA 1,Topology Appl. 27 (1987), 51–73. · Zbl 0635.32006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.