×

Quantum resurgence. (Résurgence quantique.) (French) Zbl 0807.35105

Ann. Inst. Fourier 43, No. 5, 1509-1534 (1993); Corrigendum ibid. 44, No. 3, 987 (1994).
Summary: Quantum-mechanical spectral functions admit semiclassical asymptotic expansions in the form of divergent series in powers of Planck’s constant. Quantum resurgence expresses their divergence and Borel resummation in detail in terms of the complex classical trajectories. Two examples are shown: the Selberg zeta function and the quartic oscillator spectrum.

MSC:

35P20 Asymptotic distributions of eigenvalues in context of PDEs
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
40G10 Abel, Borel and power series methods
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML

References:

[1] A. VOROS, Spectral zeta functions, dans : Zeta functions in geometry, Proceedings Tokyo, 1990, eds. N. Kurokawa et T. Sunada, Advanced Studies in Pure Mathematics, Math. Soc. Japan, Kinokuniya, Tokyo, 21 (1992), 327-358.0819.1103394h:58176 · Zbl 0819.11033
[2] R. BALIAN, G. PARISI and A. VOROS, Quartic oscillator, dans : Feynman path integrals, Proceedings, Marseille 1978, eds. S. Albeverio et al., Lecture Notes in Physics, Springer, 106 (1979), 337-360.0417.3409481b:41083 · Zbl 0417.34094
[3] A. VOROS, Le problème spectral de Sturm-Liouville..., Séminaire Bourbaki 1982/1983, exposé 602, Astérisque, Soc. Math. France, 105-106 (1983), 95-103.0534.70014SB_1982-1983__25__95_0 · Zbl 0534.70014
[4] A. VOROS, The return of the quartic oscillator. The complex WKB method, Ann. Inst. H. Poincaré, 39 A (1983), 211-338 (note de résultats: Correspondance semi-classique et résultats exacts : cas des spectres d’opérateurs de Schrödinger homogènes, C.R. Acad. Sc. Paris 293, Série I (1981), 709-712).0526.34046AIHPA_1983__39_3_211_0 · Zbl 0526.34046
[5] A. VOROS, Schrödinger equation from O(ℏ) to o(ℏ∞), dans : Path integrals from meV to MeV, Proceedings, Bielefeld, 1985, eds. M.C. Gutzwiller et al., World Scientific, 1986, 173-195.
[6] P. CARTIER et A. VOROS, Une nouvelle interprétation de la formule des traces de Selberg, C.R. Acad. Sci. Paris, 307, Série I (1988), 143-148 et dans : The Grothendieck Festschrift (vol. 2), eds. P. Cartier et al., Progress in Mathematics, Birkhäuser, 1991, 1-67.0652.10023 · Zbl 0652.10023
[7] R.B. DINGLE, Asymptotic expansions : their derivation and interpretation, Academic Press, 1973.0279.4103058 #17673 · Zbl 0279.41030
[8] R. BALIAN and C. BLOCH, Solutions of the Schrödinger equation in terms of classical paths, Ann. Phys., New York, 85 (1974), 514-545 ; F. PHAM, ce volume.0281.3502955 #11840 · Zbl 0281.35029
[9] C. BENDER and T.T. WU, Anharmonic oscillator, Phys. Rev., 184 (1969), 1231-1260 et D 7 (1973), 1620-1636 ; J. ZINN-JUSTIN, Instantons in quantum mechanics : numerical evidence for a conjecture, J. Math. Phys., 25 (1983), 549-555 ; E. DELABAERE, H. DILLINGER et F. PHAM, Développements semi-classiques exacts des niveaux d’énergie d’un oscillateur à une dimension, C.R. Acad. Sci. Paris, 310 Série I (1990), 141-146 ; T. AOKI, T. KAWAI et Y. TAKEI, The Bender-Wu analysis..., dans : Special Functions, Proceedings, Hayashibara Forum, Okayama, 1990, eds. M. Kashiwara et T. Miwa, Springer, 1991, 1-29.
[10] A. VOROS, Spectral functions, special functions and the Selberg zeta function, Commun. Math. Phys., 110 (1987), 439-465.0631.1002589b:58173 · Zbl 0631.10025
[11] Y. COLIN DE VERDIÈRE, Spectre du laplacien et longueurs des géodésiques périodiques II, Compos. Math., 27 (1973), 159-184.0281.5303650 #1293CM_1973__27_2_159_0 · Zbl 0281.53036
[12] J. CHAZARAIN, Formule de Poisson pour les variétés riemanniennes, Invent. Math., 24 (1974), 65-82 ; J.J. DUISTERMAAT et V.W. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79.0281.35028 · Zbl 0281.35028
[13] A. SELBERG, Harmonic analysis and discontinuous groups in weakly symmetric spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47-87; V.W. GUILLEMIN, Lectures on the spectral theory of elliptic operators, Duke Math. J., 44 (1977), 485-517.0072.08201 · Zbl 0072.08201
[14] M.C. GUTZWILLER, Periodic orbits and classical quantization conditions, J. Math. Phys., 12 (1971), 343-358.
[15] E.C. TITCHMARSH, The theory of the Riemann zeta function, Clarendon Press, 1951.0042.0790113,741c · Zbl 0042.07901
[16] J. ÉCALLE, Les fonctions résurgentes, vol. 1, Publ. Math. Univ. Paris-Sud, Orsay, 81-05 (1981) ; Cinq applications des fonctions résurgentes, chap. 1, prétirage Orsay Math. 84T62 (1984) non publié ; et : exposé dans ce volume.0499.30034 · Zbl 0499.30034
[17] B. MALGRANGE, Introduction aux travaux de J. Écalle, L’Enseignement Math., 31 (1985), 261-282.0601.5804387j:32002 · Zbl 0601.58043
[18] B. CANDELPERGHER, J.-C. NOSMAS et F. PHAM, Approche de la résurgence, Hermann, 1993.0791.3200195e:34005 · Zbl 0791.32001
[19] F. STEINER, On Selberg’s zeta function for compact Riemann surfaces, Phys. Lett., B 188 (1987), 447-454.
[20] V. BERNSTEIN, Leçons sur les progrès récents de la théorie des séries de Dirichlet, Gauthier-Villars, 1933.0008.1150359.1027.02 · JFM 59.1027.02
[21] J. LERAY, Problème de Cauchy I, Bull. Soc. Math. Fr., 85 (1957), 389-429.0108.09501BSMF_1957__85__389_0 · Zbl 0108.09501
[22] E. DELABAERE et H. DILLINGER, Thèse, Université de Nice, 1991 ; E. DELABAERE, H. DILLINGER et F. PHAM, Ann. Inst. Fourier, 43-1 (1993), 163-199.AIF_1993__43_1_163_0
[23] Y. SIBUYA, Global theory of a second order linear ordinary differential operator with a polynomial coefficient, chap. 5, North Holland, 1975.0322.34006 · Zbl 0322.34006
[24] Y.F. CHANG, J.M. GREENE, M. TABOR and J. WEISS, The analytical structure of dynamical systems and self-similar natural boundaries, Physica, D 8 (1983), 183-207.0538.5803185a:58041 · Zbl 0538.58031
[25] L. BOUTET DE MONVEL and V.W. GUILLEMIN, The spectral theory of Tœplitz operators, Ann. of Math. Studies, 99, Princeton University Press, 1981 ; Th. PAUL et A. URIBE, Sur la formule semi-classique des traces, C.R. Acad. Sci. Paris, 313 Série I (1991), 217-222.0469.47021 · Zbl 0469.47021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.