Lalli, B. S. Oscillation theorems for neutral difference equations. (English) Zbl 0807.39004 Comput. Math. Appl. 28, No. 1-3, 191-202 (1994). The author oscillation criteria for first-order difference equations of the form \(\Delta x_ n + g_ n f(x_{n - r}) = 0\), \(\Delta (x_ n + px_{n - \delta k}) + g_ n f(x_{n-r}) = F_ n\) where \(\Delta x_ n = x_{n + 1} - x_ n\), \(\delta = \pm 1\), \(p\) is a real number, \(r\) and \(k\) are nonnegative integers, \(\{q_ n\}\), \(\{F_ n\}\) are sequences of nonnegative real numbers and \(f : \mathbb{R} \to \mathbb{R}\) is continuous. Oscillation criteria for nonlinear difference equation, of sublinear as well as superlinear type, are also established. Reviewer: S.Balint (Timişoara) Cited in 16 Documents MSC: 39A10 Additive difference equations Keywords:neutral difference equations; oscillation; first-order difference equations; nonlinear difference equation; sublinear; superlinear PDF BibTeX XML Cite \textit{B. S. Lalli}, Comput. Math. Appl. 28, No. 1--3, 191--202 (1994; Zbl 0807.39004) Full Text: DOI References: [1] Erbe, L. H.; Zhang, B. G., Oscillation of discrete analogues of delay equations, Diff. and Integral Equations, 2, 300-309 (1989) · Zbl 0723.39004 [2] Georgiou, D. A.; Grove, E. A.; Ladas, G., Oscillation of neutral difference equations with variable coefficients, Proc. of the Conference in Colorado Springs (1989) · Zbl 0685.39003 [3] Györi, I.; Ladas, G., Oscillation Theory of Delay Differential Equations with Applications (1991), Oxford University Press: Oxford University Press Oxford · Zbl 0780.34048 [4] Gyori, I.; Ladas, G.; Vlahos, P. N., Global attractivity in delay difference equation, Nonlinear Analysis, 17, 429-473 (1991) · Zbl 0763.39001 [5] Ladas, G., Explicit conditions for the oscillation of difference equations, J. Math. Anal. Appl., 153, 276-287 (1990) · Zbl 0718.39002 [6] Ladas, G., Oscillation of difference equations with positive and negative coefficients, Conference on Diff. Equations and Population Biology (1988), Edmonton [7] Ladas, G., Recent developments in the oscillation of delay equations, (Differential Equations: Stability and Control, Lecture Notes in Applied Math. (1991), Marcel Dekker), 321-332, Ser. 127 [8] Ladas, G.; Philos, Ch. G.; Dficas, Y. G., Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation, 2, 101-111 (1989) · Zbl 0685.39004 [9] Ladas, G.; Philos, Ch. G.; Dficas, Y. G., Necessary and sufficient conditions for oscillation of difference equations, Liberta Math., 9 (1989) · Zbl 0689.39002 [10] Philos, Ch. G., Oscillation in certain difference equations, Utilitas Math., 39, 157-172 (1991) · Zbl 0734.39004 [11] Philos, Ch. G., On oscillation of some difference equations, Funkcialaj Ekvacioj, 34, 157-172 (1991) · Zbl 0734.39004 [12] Philos, Ch. G., Oscillation in nonautonomous delay logistic difference equations, Proc. of Edinburgh Math. Soc., 35, 121-131 (1992) · Zbl 0737.39003 [14] Agarwal, R. P., Difference Equations and Inequalities (1992), Marcel Dekker: Marcel Dekker New York · Zbl 0784.33008 [15] Lalli, B. S.; Zhang, B. G.; Li, J. Z., On the oscillation of solutions and existence of positive solutions of neutral difference equations, J. Math. Anal. Appl., 158, 213-233 (1991) · Zbl 0732.39002 [17] Hooker, J.; Patula, W., A second order nonlinear difference equations: Oscillation and asymptotic behavior, J. Math. Anal. Appl., 91, 9-29 (1983) · Zbl 0508.39005 [18] Cooke, K. L.; Calef, D. F.; Level, E. V., Stability or chaos in disctrete epidemic models, (Lakshmikantham, V., Nonlinear Systems and Applications: An International Conference (1977), Academic Press: Academic Press New York), 73-93 [19] Ladas, G.; Sficas, Y. G.; Stavroulakis, I. P., Necessary and sufficient conditions for oscillation of higher order delay difference equations, Tras. Amer. Math. Soc., 285, 81-90 (1984) · Zbl 0528.34070 [20] Lakshmikantham, V.; Trigiante, D., Theory of Difference Equations: Numerical Methods and Applications (1988), Academic Press: Academic Press New York · Zbl 0683.39001 [22] Lalli, B. S.; Zhang, B. G., Oscillation and comparison theorems for certain difference equations, J. Austral. Math. Soc. Ser. B, 34, 245-256 (1992) · Zbl 0759.39002 [23] Lalli, B. S.; Zhang, B. G.; Li, J. Z., On the oscillation and existence of positive solutions of neutral difference equations, J. Math. Anal. Appl., 158, 213-233 (1991) · Zbl 0732.39002 [25] Grace, S. R.; Lalli, B. S., Oscillation of nonlinear second order neutral delay differential equations, Radovi Mat., 3, 77-84 (1987) · Zbl 0642.34059 [26] Grace, S. R.; Lalli, B. S., Oscillation and asymptotic behavior of certain second order neutral differencial equations, Radovi Mat., 5, 121-126 (1989) · Zbl 0677.34058 [27] Jaros, J.; Kusano, T., Oscillation properties of first order nonlinear functional differential equations of neutral type, Diff. and Integral Equations, 4, 425-436 (1991) · Zbl 0729.34054 [28] Thandapani, E.; Lalli, B. S., Asymptotic behavior and oscillation of general difference equations, Proc. of Conference of World Analysists (1992), Tampa, FL · Zbl 0843.39005 [29] Zhicheng, W.; Jianshe, Y., Oscillation criteria for second order nonlinear difference equations, Funkcialaj Ekvacioj, 34, 313-319 (1991) · Zbl 0742.39003 [30] Wong, J. S.W., Second order nonlinear forced oscillations, Siam J. Math. Anal., 19, 667-675 (1988) · Zbl 0655.34023 [31] Kartsatos, A., On the maintenace of oscillations of \(n^{th}\) order equations under the effect of small forcing term, (J. Diff. Equations: Numerical Methods and Applications (1985), Academic Press: Academic Press New York) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.