×

Asymptotics of heavy atoms in high magnetic fields. II: Semiclassical regions. (English) Zbl 0807.47058

Summary: The ground state energy of an atom of nuclear charge \(Ze\) in a magnetic field \(B\) is exactly evaluated to leading order as \(Z\to \infty\) in the following three regions: \(B\quad Z^{4/3}\), \(B\sim Z^{4/3}\) and \(Z^{4/3}\quad B\quad Z^ 3\). In each case this is accomplished by a modified Thomas-Fermi (TF) type theory. We also analyze these TF theories in detail, one of their consequences being the nonintuitive fact that atoms are spherical (to leading order) despite the leading order change in energy due to the \(B\) field. This paper complements and completes our earlier analysis [cf. part I, Commun. Pure Appl. Math. 47, No.4, 513-591 (1994; Zbl 0800.49041)], which was primarily devoted to the regions \(B\sim Z^ 3\) and \(B\gg Z^ 3\) in which a semiclassical TF analysis is numerically and conceptually wrong.
There are two main mathematical results in this paper needed for the proof of the exactitude of the TF theories. One is a generalization of the Lieb-Thirring inequality for sums of eigenvalues to include magnetic fields. The second is a semiclassical asymptotic formula for sums of eigenvalues that is uniform in the field \(B\).

MSC:

81V45 Atomic physics
81V70 Many-body theory; quantum Hall effect
47N50 Applications of operator theory in the physical sciences

Citations:

Zbl 0800.49041
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lieb, E.H., Solovej, J.P., Yngvason, J.: Asymptotics of Heavy atoms in High magnetic Fields: I. Lowest Landau Band Regions. Commun. Pure. Appl. Math. (in press) · Zbl 0800.49041
[2] Chanmugam, G.: Magnetic Fields of Degenerate Stars. Ann. Rev. Astron. Astrophys.30, 143–184 (1992) · doi:10.1146/annurev.aa.30.090192.001043
[3] Englert, B.G.: Semiclassical Theory of Atoms. Lect. Notes in Phys.300, Berlin, Heidelberg, New York: Springer 1988
[4] Lieb, E.H., Solovej, J.P., Yngvason, J.: Heavy Atoms in the Strong Magnetic Field of a Neutron Star. Phys. Rev. Lett.69, 749–752 (1992) · doi:10.1103/PhysRevLett.69.749
[5] Lieb, E.H., Solovej, J.P.: Atoms in the Magnetic Field of a Neutron Star. In: Proceedings of the international conference on differential equations and mathematical physics at Georgia Institute of Technology. W. Ames, E. Harrell, J. Herod, (eds.), 1992 · Zbl 0790.35080
[6] Kadomtsev, B.B.: Heavy Atoms in an Ultrastrong Magnetic Field. Sov. Phys. JETP31, 945–947 (1970)
[7] Ruderman, M.: Matter in Superstrong Magnetic Fields: The Surface of a Neutron Star. Phys. Rev. Lett.27, 1306–1308 (1971) · doi:10.1103/PhysRevLett.27.1306
[8] Mueller, R.O., Rau, A.R.P., Spruch, L.: Statistical Model of Atoms in Intense Magnetic Fields. Phys. Rev. Lett.26, 1136–1139 (1971) · doi:10.1103/PhysRevLett.26.1136
[9] Tomishima, Y., Yonei, K.: Thomas-Fermi Theory for Atoms in a Strong Magnetic Field. Progr. Theor. Phys.59, 683–696 (1978) · doi:10.1143/PTP.59.683
[10] Tomishima, Y., Matsuno, K., Yonei, K.: Spin Rearrangement of Many-Electron Atoms in Magnetic Fields of Arbitrary Strength. J. Phys. B15, 2837–2849 (1982) · doi:10.1088/0022-3700/15/17/017
[11] Fushiki, I., Gudmundsson, E.H., Pethick, C.J., Yngvason, J.: Matter in a Magnetic Field in the Thomas-Fermi and Related Theories. Ann. Phys.216, 29–72 (1992) · doi:10.1016/0003-4916(52)90041-9
[12] Yngvason, J.: Thomas-Fermi Theory for Matter in a Magnetic Field as a Limit of Quantum Mechanics. Lett. Math. Phys.22, 107–117 (1991) · Zbl 0729.60114 · doi:10.1007/BF00405174
[13] Lieb, E.H., Thirring, W.E.: Bound for the Kinetic Energy of Fermions Which Proves the Stability of Matter. Phys. Rev. Lett.35, 687–689 (1975) · doi:10.1103/PhysRevLett.35.687
[14] Lieb, E.H., Thirring, W.: A bound on the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. E.H. Lieb, B. Simon, A. Wightman (eds.), Princeton: Princeton University Press, 1976, pp. 269–303 · Zbl 0342.35044
[15] Helffer, B., Robert, D.: Calcul fonctionel par la transformée de Mellin et applications. J. Funct. Anal.53, 246–268 (1983) · Zbl 0524.35103 · doi:10.1016/0022-1236(83)90034-4
[16] Lieb, E.H.: A Variational Principle for Many-Fermion Systems. Phys. Rev. Lett.46, 457–459; Erratum47, 69 (1981) · doi:10.1103/PhysRevLett.46.457
[17] Lieb, E.H., Oxford, S.: An Improved Lower Bound on the Indirect Coulomb Energy. Int. J. Quant. Chem.19, 427–439 (1981) · doi:10.1002/qua.560190306
[18] Benguria, R., Lieb, E.H.: The positivity of the pressure in Thomas-Fermi theory. Commun. Math. Phys.63, 193–218; Errata71, 94 (1980) · doi:10.1007/BF01196930
[19] Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys.53, 603–641 (1981); Erratum, Rev. Mod. Phys.54, 311 (1982) · Zbl 1114.81336 · doi:10.1103/RevModPhys.53.603
[20] Reed, M., Simon, B.: Methods of Modern Mathematical Phys. Vol. II. New York: Academic Press 1975 · Zbl 0308.47002
[21] Simon, B.: Functional Integration and Quantum Physics. New York: Academic Press, 1979 · Zbl 0434.28013
[22] Avron, J., Herbst, I., Simon, B.: Schrödinger Operators with Magnetic Fields. I. General Interactions. Duke Math. J.45, 847–883 (1978) · Zbl 0399.35029 · doi:10.1215/S0012-7094-78-04540-4
[23] Sobolev, A.: Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field. J. Sov. Math.35, 2201–2212 (1986) · Zbl 0643.35028 · doi:10.1007/BF01104868
[24] Solnyshkin, S.N.: The asymptotic behavior of the energy of bound states of the Schrödinger operator in the presence of electric and magnetic fields. Probl. Mat. Fiz.10, 266–278 (1982) · Zbl 0513.35012
[25] Ivrii, V.: Semiclassical microlocal analysis and precise spectral asymptotics. Preprints of Centre de Mathematiques, Ecole Polytechnique · Zbl 0906.35003
[26] Sobolev, A.: The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field. Duke Math. J. (to appear) · Zbl 0824.35151
[27] Lieb, E.H., Solovej, J.P.: Quantum coherent operators: A generalization of coherent states. Lett. Math. Phys.22, 145–154 (1991) · Zbl 0757.46064 · doi:10.1007/BF00405179
[28] Gadiyak, G.V., Obrekht, M.S., Yanenko, N.N.: Equation of State of the Ae Phase of the Crust of a Pulsar with Allowance for the Effect of a Superstrong Magnetic Field. Astrophysics17, 416–421 (1981) · doi:10.1007/BF01004240
[29] Fushiki, I., Gudmundsson, E.H., Pethick, C.J.: Surface Structure of Neutron Stars with High Magnetic Fields. Astrophys. J.342, 958–975 (1989) · doi:10.1086/167653
[30] Abrahams, A.M., Shapiro, S.L.: Equation of State in a Strong Magnetic Field: Finite Temperature and Gradient Corrections. Astrophys. J.374, 652–667 (1991) · doi:10.1086/170151
[31] Rögnvaldsson, Ö.E., Fushiki, I., Pethick, C.J., Gudmundsson, E.H., Yngvason, J.: Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars: Effects of Higher Landau Bands. Astrophys. J., in press
[32] Banerjee, B., Constantinescu, D.H., Rehák, P.: Thomas-Fermi and Thomas-Fermi-Dirac Calculations for Atoms in a Very Strong Magnetic Field. Phys. Rev. D10, 2384–2395 (1974) · doi:10.1103/PhysRevD.10.2384
[33] Constantinescu, D.H., Rehák, P.: Condensed matter in a Very Strong Magnetic Field, at High Pressure and Zero Temperature. Il Nuovo Cimento32B, 177–194 (1976)
[34] March, N.H., Tomishima, Y.: Behavior of positive ions in extremely strong magnetic fields. Phys. Rev. D19, 449–450 (1979) · doi:10.1103/PhysRevD.19.449
[35] Skjervold, J.E., Östgaard, E.: Heavy Atoms in Superstrong Magnetic Fields. Physica Scripta29, 543–550 (1984) · doi:10.1088/0031-8949/29/6/008
[36] Spruch, L.: Pedagogical notes on Thomas-Fermi theory (and on some improvements): atoms, stars, and the stability of matter. Rev. Mod. Phys.63, 151–209 (1991) · doi:10.1103/RevModPhys.63.151
[37] Tomishima, Y., Shinjo, K.: Inhomogeneity Corrections to the Thomas-Fermi Atom in a Strong Magnetic Field. Progr. Theor. Phys.62, 853–861 (1979) · doi:10.1143/PTP.62.853
[38] Yonei, K., Matsumochi, T.: A Thomas-Fermi-Dirac Theory of an Atom in Strong Magnetic Fields. J. Phys. Soc. Jap.59, 3571–3583 (1990) · doi:10.1143/JPSJ.59.3571
[39] Abrahams, A. M., Shapiro, S.L.: Molecules and Chains in a Strong Magnetic Field: Statistical Treatment. Preprint, Cornell University, 1991
[40] Goldstein, J.A., Rieder, G.R.: Thomas-Fermi theory with an external magnetic field. J. Math. Phys.32, 2907–2917 (1991) · doi:10.1063/1.529084
[41] Pflazner, S., March, N.H.: Thomas-Fermi theory in magnetic fields of arbitrary strength. J. Math. Phys.34, 551–557 (1993)
[42] Lieb, E.H., Simon, B.: The Thomas-Fermi Theory of Atoms, Molecules and Solids. Adv. in Math.23, 22–116 (1977) · Zbl 0938.81568 · doi:10.1016/0001-8708(77)90108-6
[43] Sondheimer, E.H., Wilson, A.H.: The diamagnetism of free electrons. Proc. Roy. Soc.A210, 173–190 (1951) · Zbl 0044.45201 · doi:10.1098/rspa.1951.0239
[44] Peierls, R.E.: The Quantum Theory of Solids. Oxford: Oxford University Press, 1955, p. 148 · Zbl 0068.23207
[45] Helffer, B., Sjöstrand, J.: Diamagnetism and de Haas van Alphen Effect. Ann. Inst. H. Poincaré, Phys. Theorique52, 303–375 (1990) · Zbl 0715.35070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.