Semi-infinite optimization: Structure and stability of the feasible set. (English) Zbl 0807.90113

Summary: The problem of the minimization of a function \(f: \mathbb{R}^ n\to \mathbb{R}\) under finitely many equality constraints and perhaps infinitely many inequality constraints gives rise to a structural analysis of the feasible set \(M[H,G]= \{x\in \mathbb{R}^ n\mid H(x)= 0,\;G(x,y)\geq 0,\;y\in Y\}\) with compact \(Y\subset \mathbb{R}^ r\). An extension of the well-known Mangasarian-Fromovitz constraint qualification (EMFCQ) is introduced. The main result for compact \(M[H,G]\) is the equivalence of the topological stability of the feasible set \([H,G]\) and the validity of EMFCQ. As a byproduct, we obtain under EMFCQ that the feasible set admits local linearizations and also that \(M[H,G]\) depends continuously on the pair \((H,G)\). Moreover, EMFCQ is shown to be satisfied generically.


90C34 Semi-infinite programming
Full Text: DOI


[1] Guddat, J., Jongen, H. T., andRueckmann, J.,On Stability and Stationary Points in Nonlinear Optimization, Journal of the Australian Mathematical Society, Series B, Vol. 28, pp. 36-56, 1986. · Zbl 0621.49016
[2] Mangasarian, O. L., andFromovitz, S.,The Fritz John Necessary Optimality Conditions in the Presence of Equality and Inequality Constraints, Journal of Mathematical Analysis and Applications, Vol. 17, pp. 37-47, 1967. · Zbl 0149.16701
[3] Wetterling, W. W. E., Definitheitsbedingungen für relative Extrema bei Optimierungs-und Approximationsaufgaben, Numerische Mathematik, Vol. 15, pp. 122-136, 1970. · Zbl 0184.39101
[4] Hettich, R., andZencke, P.,Numerische Methoden der Approximation und semi-infiniten Optimierung, Teubner Taschenbücher, Stuttgart, Germany, 1982. · Zbl 0481.65033
[5] Jongen, H. T., andZwier, G.,On the Local Structure of the Feasible Set in Semi-Infinite Optimization, Parametric Optimization and Approximation, Edited by B. Brosowski and F. Deutsch, Birkhäuser Verlag, Basel, Switzerland, pp. 185-202, 1985.
[6] Zwier, G.,Structural Analysis in Semi-Infinite Programming, Dissertation, University of Twente, Twente, Holland, 1987. · Zbl 0616.90070
[7] Jongen, H. T., Jonker, P., andTwilt, F.,Nonlinear Optimization in ?n,Vol. 1: Morse Theory, Chebychev Approximation, Peter Lang Verlag, Frankfurt am Main, Germany, 1983. · Zbl 0527.90064
[8] Hirsch, M. W.,Differential Topology, Springer-Verlag, New York, New York, 1976.
[9] Berge, C.,Espaces Topologique, Functions Multivoques, Dunod, Paris, France, 1966. · Zbl 0164.52902
[10] Bank, B., Guddat, J., Klatte, D., Kummer, B., andTammer, K.,Nonlinear Parametric Optimization, Akademie-Verlag, Berlin, Germany, 1982. · Zbl 0502.49002
[11] Jongen, H. T., Jonker, P., andTwilt, F.,Nonlinear Optimization in ?n,Vol. 2: Transversality, Flows, Parametric Aspects, Peter Lang Verlag, Frankfurt am Main, Germany, 1986. · Zbl 0611.90071
[12] Fiacco, A. V.,Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, New York, 1983. · Zbl 0543.90075
[13] Ljusternik, L. A., andSobolew, W. I.,Elemente der Funktionalanalysis, Akademie-Verlag, Berlin, Germany, 1960. · Zbl 0090.32302
[14] Cheney, E. W.,Introduction to Approximation Theory, McGraw-Hill, New York, New York, 1966. · Zbl 0161.25202
[15] Clarke, F. H.,Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, New York, 1983. · Zbl 0582.49001
[16] Jongen, H. T., andPallaschke, D.,On Linearization and Continuous Selections of Functions, Optimization, Vol. 19, pp. 343-353, 1988. · Zbl 0671.90099
[17] Amann, H.,Gewöhnliche Differentialgleichungen, Walter de Gruyter, Berlin, Germany, 1983.
[18] Broecker, T., andLander, L.,Differentiable Germs and Catastrophes, Cambridge University Press, Cambridge, England, 1975.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.