Ecalle, Jean Cohesive functions and weak accelerations. (English) Zbl 0808.30002 J. Anal. Math. 60, 71-97 (1993). It is proved in this article that the class of cohesive functions exactly coincides with the class of weak accelerates, namely, of all functions obtainable by applying the so-called acceleration operators. The class of cohesive functions covers most quasianalytic Carleman classes, while removing their instability. In the first sections the author recalls the basic facts about Carleman quasianalyticity and Dyn’kin pseudoanalyticity; about cohesive functions and their stability; about the acceleration-deceleration operators and their integral kernels.The main application following from this remarkable coincidence is now an elementary method for cohesive and quasianalytic continuation. The property of being cohesive has other various applications. The article contains minor misprints. Reviewer: A.A.Melentsov (Ekaterinburg) Cited in 2 ReviewsCited in 7 Documents MSC: 30B40 Analytic continuation of functions of one complex variable 30D60 Quasi-analytic and other classes of functions of one complex variable Keywords:quasianalytic Carleman classes; quasianalytic continuation × Cite Format Result Cite Review PDF Full Text: DOI References: [1] G. V. Badalyan, Classification and representation of infinitely differentiable functions (Russian), Izv. Akad. Nauk SSSR, Mat. Ser. 34 (1970), 584–620. [2] T. Bang, Om quasianalytiske Funktioner, Thesis, Copenhagen, 1946. [3] A. Beurling, Collected Works, Vol. 1, Complex Analysis, Birkhäuser, Boston, 1989, pp. 396–443. · Zbl 0732.01042 [4] T. Carleman, Les Fonctions Quasianalytiques, Gauthiers-Villars, Paris, 1926. · JFM 52.0255.02 [5] A. Denjoy, Sur les fonctions quasianalytiques d’une variable réele, C. R. Acad. Sci. Paris 173 (1921), 1329. · JFM 48.0295.01 [6] E. M. Dyn’kin, Pseudoanalytic extensions of smooth functions. The uniform scale, AMS Transl. (2) 115 (1980), 33–58. [7] E. M. Dyn’kin, Methods of the theory of singular integrals; II, in Encyclopaedia Math. Sci., Vol. 42, Springer, Berlin, 1991. [8] E. M. Dyn’kin, The pseudoanalytic extensions, in Mandelbrojt Memorial Volume, J. A. M., 1992. [9] J. Ecalle, Les fonctions résurgentes, Vol. 3. L’équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay, 1985. · Zbl 0602.30029 [10] J. Ecalle, Finitude des cycles limites et accéléro-sommation de l’application de retour, in Bifurcations of Planar Vector Fields, Proceedings Luminy 1989, Lecture Notes in Math. 1455, Springer-Verlag, Berlin, 1989, pp. 74–159. [11] J. Ecalle, Introduction aux fonctions analysables et solution constructive du problème de Dulac, Act. Math., Hermann Publ., Paris, 1992. · Zbl 1241.34003 [12] J. Ecalle, The acceleration operators and their applications to differential equations, quasianalytic functions, the constructive proof of Dulac’s conjecture, Proceedings of the 1990 I. C. M., Springer-Verlag, Berlin, 1990. · Zbl 0741.30030 [13] J. Ecalle, Calcul accélératoire et applications, Act. Math., Ed. Hermann, Paris, to appear. [14] S. Mandelbrojt, Séries de Fourier et classes quasianalytiques de fonctions, Gauthiers-Villars, Paris, 1936. [15] S. Mandelbrojt, Séries adhérentes, Gauthiers-Villars, Paris, 1952. [16] A. L. Volberg, Quasianalytic functions and their applications, a survey, to appear. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.