Glangetas, L.; Merle, F. Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I. (English) Zbl 0808.35137 Commun. Math. Phys. 160, No. 1, 173-215 (1994). See the review of part II below. Cited in 47 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35B40 Asymptotic behavior of solutions to PDEs 76X05 Ionized gas flow in electromagnetic fields; plasmic flow Keywords:blow-up solutions; concentration properties; existence; concentration mass; instability of periodic solutions Citations:Zbl 0808.35138 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Added, H., Added, S.: Existence globale de solutions fortes pour les équations de la turbulence de Langmuir en dimension 2. C.R. Acad. Paris299, 551–554 (1984) · Zbl 0575.35080 [2] Added, H., Added, S.: Equations of Langmuir turbulence and nonlinear Schrödinger equations. Smoothness and approximation. J. Funct. Anal.79, 183–210 (1988) · Zbl 0655.76044 · doi:10.1016/0022-1236(88)90036-5 [3] Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Exsistence of a ground state; II existence of infinitely many solutions. Arch. Rat. Mech. An.82, 313–375 (1983) · Zbl 0556.35046 [4] Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys.85, 549–561 (1982) · Zbl 0513.35007 · doi:10.1007/BF01403504 [5] Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations I, II. The Cauchy problem, general case. J. Funct. Anal.32, 1–71 (1979) · Zbl 0396.35028 · doi:10.1016/0022-1236(79)90076-4 [6] Glangetas, L., Merle, F.: Concentration properties of blow-up solutions and instability results for Zakharov equations in dimension two, Part II. Commun. Math. Phys., to appear · Zbl 0808.35138 [7] Glassey, R.T.: On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys.18, 1794–1797 (1977) · Zbl 0372.35009 · doi:10.1063/1.523491 [8] Kato, T.: On nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré, Physique Théorique49, 113–129 (1987) [9] Kwong, M.K.: Uniqueness of positive solutions of {\(\Delta\)}u+u p =0 in \(\mathbb{R}\)N, Arch. Rat. Mech. An.105, 243–266 (1989) · Zbl 0676.35032 [10] Landman, M., Papanicolaou, G.C., Sulen, C., Sulen, P.L., Wang, X.P.: Stability of isotropic self-similar dynamics for scalar collapse. Phys. Rev. A46, 7869–7876 (1992) · doi:10.1103/PhysRevA.46.7869 [11] Merle, F.: Determination of blow-up solutions with minimal mass for Schrödinger equation with critical power. Duke J. (to appear) · Zbl 0808.35141 [12] Merle, F.: On uniqueness and continutation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Commun. Pure Appl. Math.45, 203–254 (1992) · Zbl 0767.35084 · doi:10.1002/cpa.3160450204 [13] Ozawa, T., Tsutsumi, Y.: The nonlinear Schrödinger Limit and the initial layer of the Zakharov equations. Preprint · Zbl 0754.35113 [14] Ozawa, T., Tsutsumi, Y.: Existence and smoothing effect of solutions pfor the Zakharov equations. Preprint · Zbl 0842.35116 [15] Papanicolaou, G.C., Sulem, C., Sulem, P.L., Wang, X.P.: Singular solutions of the Zakharov equations for Langmuir turbulence. Phys. Fluids B3, 969–980 (1991) · doi:10.1063/1.859852 [16] Pohozaev, S.I.: Eigenfunctions of the equation {\(\Delta\)}u+f(u)=0. Soviet Math.5 1408–1411 (1965) · Zbl 0141.30202 [17] Rabinowitz, P.H.: Some aspect of nonlinear eigenvalue problems. Rocky Mountain J. Math.3, 161–202 (1973) · Zbl 0255.47069 · doi:10.1216/RMJ-1973-3-2-161 [18] Schochet, S.H., Weinstein, D.H.I.: The nonlinear limit of the Zakharov equations governing Langmuir turbulence. Commun. Math. Phys.106, 569–580 (1986) · Zbl 0639.76054 · doi:10.1007/BF01463396 [19] Sobolev, V.V., Synakh, V.S., Zakharov, V.E.: Character of the singularity and stochastic phenomena in self-focusing. Zh. Eksp. theor. Fiz. Pis’ma Red14, 390–393 (1971) [20] Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149–162 (1977) · Zbl 0356.35028 · doi:10.1007/BF01626517 [21] Sulem, C., Sulem, P.L.: Quelques résultats de r’egularité pour les équations de la turbulence de Langmuir. C.R. Acad. Sci. Paris289, 173–176 (1979) · Zbl 0431.35077 [22] Weinstein, M.I.: Modulation stability of ground states of the nonlinear Schrödinger equations. SIAM J.Math. Anal.16, 472–491 (1985) · Zbl 0583.35028 · doi:10.1137/0516034 [23] Weinstein, M.I.: Nonlinear Schrödinger equations and sharp Interpolation estimates. Commun. Math. Phys.87, 567–576 (1983) · Zbl 0527.35023 · doi:10.1007/BF01208265 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.