Mok, Ngaiming; Siu, Yum-Tong; Yeung, Sai-Kee Geometric superrigidity. (English) Zbl 0808.53043 Invent. Math. 113, No. 1, 57-83 (1993). The most general results in the theory of geometric superrigidity are proved. The proof of these results consists of a general Bochner type formula obtained by a simple integration by parts and of the verification of certain inequalities for the eigenvalues of a certain quadratic form defined from the invariant curvature tensor. Reviewer: A.Fleischer (München) Cited in 2 ReviewsCited in 37 Documents MSC: 53C20 Global Riemannian geometry, including pinching 58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.) 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) Keywords:harmonic map; sectional curvature; Bochner formula; graded Lie group; geometric superrigidity × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] [Be1] Besse, A.: Manifolds All of Whose Geodesics Are Closed. Berlin Heidelberg New York: Springer 1978 · Zbl 0387.53010 [2] [Be2] Besse, A.: Einstein Manifolds, Berlin Heidelberg New York: Springer 1986 [3] [Bo1] Borel, A.: On the curvature tensor of the Hermitian symmetric manifolds. Ann. Math.71, 508-521 (1960) · Zbl 0100.36101 · doi:10.2307/1969940 [4] [Bo2] Borel, A.: Density properties for certain subgroups of semi-simple groups without compact components. Ann. Math.72, 179-188 (1960) · Zbl 0094.24901 · doi:10.2307/1970150 [5] [Ca] Calabi, E.: Matsushima’s theorem in Riemannian and Kähler geometry. Notices Am. Math. Soc.10, 505 (1963) [6] [C-V] Calabi, E., Vesentini, E.: On compact locally symmetric Kähler manifolds. Ann. Math.71, 472-507 (1960) · Zbl 0100.36002 · doi:10.2307/1969939 [7] [Co1] Corlette, K.: Flat G-bundles with canonical metrics. J. Differ. Geom. 28, 361-382 (1988) · Zbl 0676.58007 [8] [Co2] Corlette, K.: Archimedean superrigidity and hyperbolic geometry. Ann. Math.135, 165-182 (1992) · Zbl 0768.53025 · doi:10.2307/2946567 [9] [E-S] Eells, J., Sampson, J.: Harmonic maps of Riemannian manifolds. Am. J. Math.86, 109-160 (1964) · Zbl 0122.40102 · doi:10.2307/2373037 [10] [G] Gromov, M.: Foliated Plateau problem I, II. Geom. Funct. Analy.1, 14-79 and 253-320 (1991) · Zbl 0768.53011 · doi:10.1007/BF01895417 [11] [G-S] Gromov, M., Schoen, R.: Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups of rank one. (Preprint 1991) [12] [H] Hernandez, L.: Kähler manifolds and 1/4-pinching. Duke Math. J.62, 601-612 (1991) · Zbl 0725.53068 · doi:10.1215/S0012-7094-91-06226-5 [13] [K-N1] Kaneyuki, S., Nagano, T.: On the first Betti numbers of compact quotient spaces of complex semi-simple Lie groups by discrete subgroups. Sci. Pap. Coll. Gen. Ed. Univ. Tokyo12, 1-11 (1962) · Zbl 0132.19502 [14] [K-N2] Kaneyuki, S., Nagano, T.: On certain quadratic forms related to symmetric Riemannian spaces. Osaka Math. J.14, 241-252 (1962) · Zbl 0114.13403 [15] [L] Labourie, F.: Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative. Proc. Am. Math. Soc.111, 877-882 (1991) · Zbl 0783.58016 [16] [Mar] Margulis, G. A.: Discrete groups of motions of manifolds of nonpositive curvature. Transl., I. Ser., Am. Math. Soc.109, 33-45 (1977) · Zbl 0367.57012 [17] [Mat] Matsushima, Y.: On the first Betti number of compact quotient spaces of higherdimensional symmetric spaces. Ann. Math.75, 312-330 (1962) · Zbl 0118.38303 · doi:10.2307/1970176 [18] [M-S] Matsushima, Y., Shimura, G.: On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes. Ann. Math.78, 417-450 (1963) · Zbl 0141.38704 · doi:10.2307/1970534 [19] [Mo] Mok, N.: Aspects of Kähler geometry on arithmetic varieties. In: Proceedings of the 1989 AMS Summer School on Several Complex Variables in Santa Cruz. (Proc. Symp. Pure Math., Vol. 52, part 21. pp. 335-396) providence, RI: Am. Soc. 1991 · Zbl 0736.53048 [20] [Mos] Mostow, G. D.: Strong Rigidity of Locally Symmetric Spaces. (Ann. Math. Stud. Vol. 78) Princeton University: Princeton Press 1973 · Zbl 0265.53039 [21] [O-V] Onishchik, A. L., Vinberg, E. B.: Lie Groups and Algebraic Grops. Berlin Heidelberg New York: Springer 1990 [22] [Sa] Sampson, J.: Applications of harmonic maps to Kähler geometry. Contemp. Math.49, 125-133 (1986) · Zbl 0605.58019 [23] [Si1] Siu, Y.-T.: Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems. J. Differ. Geom.17, 55-138 (1982) · Zbl 0497.32025 [24] [Si2] Siu, Y.-T.: Geometric Superrigidity. In. Proceedings of the International Colloquium on ?Geometry and Analysis? in Bombay, India. January 1992 [25] [W-Z] Wang, McK, Ziller, W.: Symmetric spaces and stronly isotropy irreducible spaces. (Preprint 1991) [26] [W] Weil, A.: On discrete subgroups of Lie groups. II. Ann. Math.75, 578-602 (1962) · doi:10.2307/1970212 [27] [We] Weyl, H.: Classical Groups. Princeton, NJ: Princeton University Press 1973 [28] [Wo] Wolf, J.: Spaces of Constant Curvature, 5th ed. Wilmington DE: Publish or Perish 1984 [29] [Y-Z] Yau, S. T., Zheng, F.: Negatively 1/4-pinched Riemannian metric on a compact Kähler manifold. Invent. Math.103, 527-536 (1991) · Zbl 0792.53064 · doi:10.1007/BF01239525 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.