zbMATH — the first resource for mathematics

Heat kernel bounds, conservation of probability and the Feller property. (English) Zbl 0808.58041
The author studies conditions under which the heat semigroup of a weighted Laplace-Beltrami operator on a Riemannian manifold conserves probability and has the Feller property, respectively. He obtains a pointwise Gaussian upper bound on heat kernels. The results can be extended for instance to Lipschitz manifolds.
Reviewer: H.Baum (Berlin)

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35P20 Asymptotic distributions of eigenvalues in context of PDEs
53C12 Foliations (differential geometric aspects)
Full Text: DOI
[1] S. Albeverio and M. Rockner,Classical Dirichlet forms on topological vector spaces–closability and a Cameron-Martin formula, J. Funct. Anal., to appear.
[2] A. Ancona, University of Warwick Lectures, December, 1989.
[3] R. Azencott,Behaviour of diffusion semigroups at infinity, Bull. Soc. Math. Fr.102 (1974), 193–240. · Zbl 0293.60071
[4] I. Chavel,Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984. · Zbl 0551.53001
[5] J. Cheeger, M. Gromov and M. Taylor,Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom.17 (1982), 15–53. · Zbl 0493.53035
[6] F. Chiarenza and R. Serapioni,A remark on a Harnack inequality for, degenerate parabolic equations, Rend. Sem. Mat. Univ. Padova73 (1985), 179–190. · Zbl 0588.35013
[7] E. B. Davies,Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds, J. Funct. Anal.80 (1988), 16–32. · Zbl 0759.58045 · doi:10.1016/0022-1236(88)90062-6
[8] E. B. Davies,Heat Kernels and Spectral Theory, Cambridge University Press, 1989. · Zbl 0699.35006
[9] E. B. Davies and M. M. H. Pang,Sharp heat kernel bounds for some Laplace operators, Quart. J. Math. Oxford (2)40 (1989), 281–290. · Zbl 0701.35004 · doi:10.1093/qmath/40.3.281
[10] E. B. Fabes and D. W. Stroock,A new proof of Moser’s parabolic Harnack inequality via the old ideas of Nash, Arch. Ration. Mech. Anal.96 (1986), 327–338. · Zbl 0652.35052 · doi:10.1007/BF00251802
[11] M. Fukushima,Dirichlet Forms and Markov Processes, North-Holland, Amsterdam, 1980. · Zbl 0422.31007
[12] M. P. Gaffney,The conservation property of the heat equation on Riemannian manifolds, Comm. Pure Appl. Math.12 (1959), 1–11. · Zbl 0102.09202 · doi:10.1002/cpa.3160120102
[13] A. A. Grigor’yan,On stochastically complete Riemannian manifolds, Soviet Math. Doklady34 (1987), 310–313. · Zbl 0632.58041
[14] R. Z. Hasminkii,Ergodic properties of recurrent diffusion processes and stabilisation of the solution of the Cauchy problem for parabolic equations, Theor. Probab. Appl.5 (1960), 179–196. · Zbl 0106.12001 · doi:10.1137/1105016
[15] K. Ichihara,Curvature, geodesics and the Brownian motion on a Riemannian manifold II, explosion properties, Nagoya Math. J.87 (1982), 115–125. · Zbl 0514.58039
[16] K. Ichihara,Explosion problems for symmetric, diffusion processes, Proc. Japan Acad.60 (1984), 243–245. · Zbl 0563.60067 · doi:10.3792/pjaa.60.243
[17] K. Ichihara,Explosion problems for symmetric diffusion processes, Trans. Am. Math. Soc.298 (1986), 515–536. · Zbl 0612.60068 · doi:10.1090/S0002-9947-1986-0860378-9
[18] P. Li and L. Karp,The heat equation on complete Riemannian manifolds, preprint, 1982.
[19] P. Li and S. T. Yau,On the parabolic kernel of the Schrödinger operator, Acta Math.156 (1986), 153–201. · Zbl 0611.58045 · doi:10.1007/BF02399203
[20] M. Lianantonakis, preprint, in preparation.
[21] T. Lyons and W. Zheng,Crossing estimate for canonical process on a Dirichlet space and a tightness result, preprint 1988: Asterique, to appear. · Zbl 0654.60059
[22] J. Moser,On a pointwise estimate for parabolic differential equations, Commun. Pure Appl. Math.24 (1971), 727–740. · Zbl 0227.35016 · doi:10.1002/cpa.3160240507
[23] Y. Oshima,On conservativeness and recurrence criteria of the Markov processes, preprint, 1989.
[24] M. M. H. Pang,L 1 properties of two classes of singular second order elliptic operators, J. London Math. Soc. (2)38 (1988), 525–543.
[25] M. M. H. Pang, L1 and L2 spectral properties of a class of singular second order elliptic operators with measurable coefficients on \({\mathcal{R}}^N \) preprint, 1990.
[26] M. Takeda,On a martingale method for symmetric diffusion processes and its applications, Osaka J. Math., to appear. · Zbl 0717.60090
[27] M. Takeda,The conservation property for the Brownian motion on Riemannian manifolds, preprint, 1989; Bull. London Math. Soc., to appear.
[28] N. Teleman,The index of signature operators on Lipschitz manifolds, Publ. Math. Inst. Hautes Etudes Sci.58 (1983), 39–78. · Zbl 0531.58044 · doi:10.1007/BF02953772
[29] N. Th. Varopoulos,Potential theory and diffusion on Riemannian manifolds, inProc. Conf. on Harmonic Analysis in Honor of A. Zygmund, Chicago (W. Beckneret al., eds.), Wadsworth, 1983, pp. 821–837.
[30] S. T. Yau,On the heat kernel of a complete Riemannian manifold, J. Math. Pures Appl.57 (1978), 191–201. · Zbl 0405.35025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.