zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On foundation of the generalized Nambu mechanics. (English) Zbl 0808.70015
This article outlines basic principles of canonical formalism for Nambu mechanics (a generalization of Hamiltonian mechanics proposed by Yoichiro Nambu in 1973). For instance, the canonical Nambu bracket for a triple of classical observables $f\sb i: \bbfR\sp 3\to \bbfR$ is given by $\{f\sb 1, f\sb 2, f\sb 3\}= {{\partial(f\sb 1, f\sb 2, f\sb 3)} \over {\partial(x\sb 1, x\sb 2, x\sb 3)}}$. The following fundamental identity is satisfied: $$\{\{f\sb 1, f\sb 2, f\sb 3\},f\sb 4, f\sb 5\}+ \{f\sb 3,\{f\sb 1, f\sb 2, f\sb 4\},f\sb 5\}+ \{f\sb 3, f\sb 4,\{f\sb 1, f\sb 2, f\sb 5\}\}= \{f\sb 1, f\sb 2,\{f\sb 3, f\sb 4, f\sb 5\}\}.\tag $*$ $$ This resembles Jacobi identity for the usual Poisson brackets. Besides, skew symmetry and Leibniz rule: $\{f\sb 1, f\sb 2, f\sb 3, f\sb 4\}= f\sb 1\{f\sb 2, f\sb 3, f\sb 4\}+ f\sb 2\{f\sb 1, f\sb 3, f\sb 4\}$ are also satisfied. Equations of motion for given two “Hamiltonians” $H\sb 1$, $H\sb 2$ are the following, by definition: $df/dt= \{H\sb 1, H\sb 2, f\}$. More generally, the author defines a Nambu-Poisson manifold of order $n$ as a manifold $X$ together with a map $\{.,\dots\}: A\sp{\oplus\sp n}\to A$, where $A$ is the ring of $C\sp \infty$-functions on $X$, and where $\{.,\dots\}$ is skew symmetric and satisfies Leibniz rule as well as identity $(*)$: $$\multline \{\{f\sb 1,\dots, f\sb{n-1}\}, f\sb{n+1},\dots, f\sb{2n-1}\}+ \{f\sb n, \{f\sb 1,\dots, f\sb{n-1}, f\sb{n+1}\}, f\sb{n+2},\dots, f\sb{2n-1}\}+\cdots\\ +\{f\sb n,\dots, f\sb{2n-2}, \{f\sb 1,\dots, f\sb{n-1}, f\sb{2n-1}\}\}= \{f\sb 1,\dots, f\sb{n-1}, \{f\sb n,\dots, f\sb{2n-1}\}\}. \endmultline$$ Then many basic concepts and properties of Hamiltonian mechanics are generalized in the context of Nambu mechanics (integrals of motion, action principle). Finally quantization procedures are also described (generalizing Feynman’s path integral, and canonical approach to quantization). It is, in my opinion, a reasonably self-contained and interesting article.

70H99Hamiltonian and Lagrangian mechanics
37J99Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
81S05Commutation relations (quantum theory)
Full Text: DOI arXiv
[1] Nambu, Y.: Generalized Hamiltonian mechanics, Phys. Rev.D7, 2405--2412 (1973) · Zbl 1027.70503 · doi:10.1103/PhysRevD.7.2405
[2] Bayen, F. Flato, M.: Remarks concerning Nambu’s generalized mechanics. Phys. Rev.D11, 3049--3053 (1975) · doi:10.1103/PhysRevD.11.3049
[3] Mukunda, N., Sudarshan, E.: Relation between Nambu and Hamiltonian mechanics. Phys. Rev.D13, 2846--2850 (1976) · doi:10.1103/PhysRevD.13.2846
[4] Hirayama, M.: Realization of Nambu mechanics: A particle interacting with SU(2) monopole. Phys. Rev.D16, 530--532 (1977) · doi:10.1103/PhysRevD.16.530
[5] Arnol’d, V.: Mathematical Methods of Classical Mechanics. GTM60, New York-Heidelberg-Berlin: Springer-Verlag, 1978
[6] Flato, M.: Private communication, 1992
[7] Flato, M., Fronsdal C.: Private communication, 1992
[8] Chakravarty, S., Ablowitz, M., Clarkson, P.: Reductions of the self-dual Yang-Mills fields and classical systems. Phys. Rev. Lett.65, 1085--1087 (1990) · Zbl 1050.81587 · doi:10.1103/PhysRevLett.65.1085
[9] Takhtajan, L.: Modular forms as tau-functions for certain integrable reductions of the self-dual Yang-Mills equations. Preprint PAM No.121, Univ. of Colorado at Boulder, 1991
[10] Chakravarty, S.: Private communication, 1992
[11] Fréchet, M.: Sur une extension de la méthode de Jacobi-Hamilton. Annali di Matematica, ser. III,XI, 187--199 (1905) · doi:10.1007/BF02419965
[12] Volterra, M.: Sopra una estensione della teoria Jacobi-Hamilton del calcolo delle variazioni. Rend. Accademia dei Lincei,XI, 127--129 (1890)
[13] Connes, A.: Non-commutative differential geometry. Publ. Math. I.E.H.S.62, 257--360 (1986)
[14] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I--II. Ann. Phys.110, 67--110, 111--151 (1978) · Zbl 0377.53024
[15] Lawrence, R.J.: Algebras and triangle relations. Harvard University preprint, 1991 · Zbl 0827.57011
[16] Weil, A.: Sur certains groupes d’opérateurs unitaries. Acta. Math.111, 143--211 (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012