×

Cleft extensions for a Hopf algebra generated by a nearly primitive element. (English) Zbl 0809.16046

Fix an integer \(N \geq 2\), and \(R\) a commutative ring containing a root \(q\) of the \(N\)-th cyclotomic polynomial over \(Z\). Let \(A_ N\) be the rank \(N^ 2\) Hopf algebra over \(R\) generated by a group-like element \(g\) and a \((1,g)\)-primitive element \(x\), with relations \(g^ N = 1\), \(x^ N = 0\) and \(xg = qgx\). If \(q\) is a primitive \(N\)-th root of unity in a field \(R\), \(A_ N\) was constructed by the reviewer [Proc. Natl. Acad. Sci. USA 68, 2631-2633 (1971; Zbl 0222.16012)]. The author determines the isomorphism classes of \(A_ N\)-cleft extensions over a given algebra \(C\). He also determines the set of crossed systems for \(A_ 2\) over \(C\).

MSC:

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)

Citations:

Zbl 0222.16012
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/0001-8708(78)90010-5 · Zbl 0326.16019 · doi:10.1016/0001-8708(78)90010-5
[2] DOI: 10.1090/S0002-9947-1986-0860387-X · doi:10.1090/S0002-9947-1986-0860387-X
[3] Blattner R., Pacific J, of Math 137 pp 37– (1989)
[4] DOI: 10.1080/00927878908823895 · Zbl 0687.16008 · doi:10.1080/00927878908823895
[5] Doi Y., Comm. Algebra 14 pp 801– (1986)
[6] DOI: 10.1016/0021-8693(89)90079-3 · Zbl 0675.16004 · doi:10.1016/0021-8693(89)90079-3
[7] DOI: 10.1016/0021-8693(92)90060-Y · Zbl 0749.16021 · doi:10.1016/0021-8693(92)90060-Y
[8] Lang S., Algebra (1965)
[9] Pierce R., Associative Algebras (1982)
[10] Sweedler M., Hopf Algebras (1969)
[11] DOI: 10.1073/pnas.68.11.2631 · Zbl 0222.16012 · doi:10.1073/pnas.68.11.2631
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.