×

Model reduction methods for chaotic systems. (English) Zbl 0809.34059

The paper is a survey (by engineers) of model reduction methods for some nonlinear systems.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93A30 Mathematical modelling of systems (MSC2010)
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34H05 Control problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: EuDML Link

References:

[1] H. D. I. Abarbanel, R. Brown, al.: Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. Phys. Rev. A 41 (1990), 4, 1782-1807.
[2] B. D. O. Anderson, J. B. Moore: Optimal Control. Prentice Hall, Englewood-Cliffs, N.J. 1990. · Zbl 0751.49013
[3] P. Berge Y. Pomeau, C. Vidal: Order Within Chaos. Wiley, New York 1984.
[4] P. A. Cook: Nonlinear Dynamical Systems. Prentice-Hall, Englewood-Cliffs, N. J. 1986. · Zbl 0588.93001
[5] F. E. C. Cullic W. H. Lin C. C. Jahnke, J. D. Sterling: Modeling for active control of combustion and thermally driven oscillations. Proc. 1991 Americal Control Conference, Boston 1991.
[6] J. C. Doyle B. A. Francis, A. B. Tannenbaum: Feedback Control Theory. McMillan, New York 1992.
[7] V. Franceschini: Bifurcation of tori and phase loocking in a dissipative system of differential equations. Physica 6D (1983), 285-304. · Zbl 1194.34075
[8] B. Friedland: Control System Design. McGraw-Hill, New York 1986. · Zbl 0925.93002
[9] R. Genesio, A. Tesi: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica (1992), to appear. · Zbl 0765.93030
[10] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York 1983. · Zbl 0515.34001
[11] T. T. Hartley H. K. Qammar J. A. De Abreu-Garcia, N. Abu Khamseh: Analysis and reduction of an infinite dimensional chaotic system. Proc. of 33rd Midwest Symposium on Circuits and Systems, Calgary 1990, pp. 889-893.
[12] T. T. Hartley, F. Mossayebi: Control of Chua’s system. J. Circuits, Systems, and Computers (1993), to appear. · Zbl 0783.93084
[13] J. S. Lai, J. C. Hung: Practical model reduction methods for control and instrumentation. IEEE Trans. Ind. Elect. IE-34 (1985), 1, 70-77.
[14] P. V. Kokotovic, H. K. Khalil: Singular Perturbations in Systems and Control. IEEE Press, New York 1986.
[15] B. J. Kuo: Automatic Control Systems. Prentice-Hall, Englewood-Cliffs, N. J. 1991.
[16] E. N. Lorenz: Deterministic nonperiodie flow. J. Atmos. Sci. 20(1963), 130-141. · Zbl 1417.37129
[17] J. M. Maciejowski: Multivariable Feedback Design. Addison-Wesley, Wokingham 1989. · Zbl 0691.93001
[18] F. E. McCaughan: Bifurcation analysis of axial flow compressor stability. SIAM J. Appl. Math. 50 (1990), 5, 1232-1253. · Zbl 0716.58022
[19] W. C. Merrill E. C. Beattie R. F. LaPrad S. M. Rock, M. M. Akhter: HYTESS - A Hypothetical Turbofan Engine Simulation. NASA TM 83561, 1984.
[20] F. Mossayebi T.T. Hartley, J. A. De Abreu-Garcia: A fundamental theorem for the model reduction of nonlinear systems. J. Franklin Inst. 329 (1992), 1, 145-154. · Zbl 0765.58016
[21] J. D. Sterling: Characterization and modeling of aperiodic pressure oscillations in combustion chambers. AI9AA Paper 91-2082. 27 Joint Propulsion Conference, Sacramento 1991.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.