×

Modular bases in a Hilbert \(A\)-module. (English) Zbl 0809.46039

Summary: Following M. Ozawa [Kodai Math. J. 3, 26-39 (1980; Zbl 0435.60033)] we introduce the concept of a modular base in a Hilbert \(A\)-module and prove that the cardinalities of any two such bases are the same.

MSC:

46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)

Citations:

Zbl 0435.60033
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] W. Ambrose: Structure theorems for a special class of Banach algebras. Trans. Amer. Math. Soc. 57 (1945), 364-386. · Zbl 0060.26906 · doi:10.2307/1990182
[2] S. A. Gaal: Linear analysis and representation theory. Springer-Verlag, Berlin, 1973. · Zbl 0275.43008
[3] L. Molnár: On Saworotnow’s Hilbert \(A\)-modules. · Zbl 0818.46056
[4] M. Ozawa: Hilbert \(B(H)\)-modules and stationary processes. Kodai Math. J. 3 (1980), 26-39. · Zbl 0435.60033 · doi:10.2996/kmj/1138036115
[5] P. P. Saworotnow: A generalized Hilbert space. Duke Math. J. 35 (1968), 191-197. · Zbl 0161.33403 · doi:10.1215/S0012-7094-68-03520-5
[6] P. P. Saworotnow and J. C. Friedell: Trace-class for an arbitrary \(H^*\)-algebra. Proc. Amer. Math. Soc. 26 (1970), 95-100. · Zbl 0197.39701 · doi:10.2307/2036810
[7] P. P. Saworotnow: Trace-class and centralizers of an \(H^*\)-algebra. Proc. Amer. Math. Soc. 26 (1970), 101-104. · Zbl 0197.39702 · doi:10.2307/2036811
[8] J. F. Smith: The \(p\)-classes of an \(H^*\)-algebra. Pacific J. Math. 42 (1972), 777-793. · Zbl 0247.46065 · doi:10.2140/pjm.1972.42.777
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.