×

Representation of extension groups. Applications. (Représentation des groupes d’extension. Applications.) (French) Zbl 0809.55006

This paper is concerned with the homotopy classification of spaces \(X\) having two nonvanishing homotopy groups, \(\Pi\) and \(\Pi'\), possibly admitting module structures for some discrete group \(G\). (The model here is the action of the fundamental group on the universal covering space.) In order to do this it is necessary to describe the \(n\)th group of \(G\)- extensions \(\text{Ext}^ n_ G (\Pi, \Pi')\) as the space of homotopy classes of sections of a fibration constructed via the classifying space for \(G\), Theorem 1.1. Intuitively the obstruction to geometric realisation by a twisted product of \(K(\Pi, p)\) and \(K(\Pi, p + 1)\) is an element \(\theta_ G\) in \(\text{Ext}^ 3_ G (\Pi, \Pi')\). The method used is patient exploitation of known techniques, and the paper ends with the following application:
Let \(\widetilde X\) be simply-connected with \(\pi_ 2 = \Pi\), \(\pi_ 3 = \Pi'\), and assume that \(\Pi\) is free. In the presence of a \(G\)-action the set of possible homotopy types is in (1-1) correspondence with \(\text{Ext}^ 2_ G (\Pi, \Pi')\).

MSC:

55P10 Homotopy equivalences in algebraic topology
55S45 Postnikov systems, \(k\)-invariants

References:

[1] Allaud, G. , On the classification of fibre space . Math. Z. 92, 110-125, (1966). · Zbl 0139.16603 · doi:10.1007/BF01312430
[2] Assadi, A. , Homotopy actions and cohomologie of finite groups , LNM 1217, 26-57, (1986). · Zbl 0609.57021
[3] Baues, H.J. , Algebraic Homotopy. Cambridge Studies in Advanced Math. 15 , Cambridge University Press, (1990). · Zbl 0688.55001
[4] Cartan, H. , and Eilenberg, S. , Homological Algebra . Princeton University Press, (1973).
[5] Cooke, G. , Replacing homotopy actions by topological actions . Trans. of A.M.S., 237, (1978). · Zbl 0434.55008 · doi:10.2307/1997628
[6] Cuntz, J. , A New Look at KK-theory, K-Theory , 31-51, (1987). · Zbl 0636.55001 · doi:10.1007/BF00533986
[7] Didierjean, G. , Homotopie de l’espace des équivalences fibrées . Ann. Inst. Fourier, 35(3), 33-47, (1985). · Zbl 0563.55005 · doi:10.5802/aif.1017
[8] Dold, A. , and Lashof, R. , Principal quasifibrations and fibre homotopy equivalence of bundles . Ill. J. Math. 3, 285-305, (1959). · Zbl 0088.15301
[9] Dwyer, D.G. , Kan, D.M. and Smith, J.H. , Towers of fibrations and homotopical wreath products . J. Pure and Applied Algebra. 3, 285-305, (1989). · Zbl 0683.55018 · doi:10.1016/0022-4049(89)90119-9
[10] Fieux, E. , Classes caractéristiques en KK-théorie des C*-algèbres avec opérateurs . Thèse, URA 1408 Top. et Géom., U.P.S. Toulouse, (1990).
[11] Hayat-Legrand, C. , Classes homotopiques associées à une G-opération . LNM 1509, 134-138, (1990). · Zbl 0751.55013
[12] Huebschmann, J. , Change of rings and characteristic classes . Math. Proc. Camb. Phil. Soc., 106, 29, (1989). · Zbl 0684.18002 · doi:10.1017/S0305004100067967
[13] Legrand, A. , Homotopie des espaces de sections . LNM 941, (1982). · Zbl 0535.55001
[14] Legrand, A. , Caractérisation des opérations d’algèbres sur les modules différentiels . Compositio Math., 66, 23-36, (1988). · Zbl 0652.55012
[15] May, J.P. , Simplicial objects in algebraic topology . Van Nostrand, (1963). · Zbl 0165.26004
[16] Mac Lane, S. , Homology , Springer Verlag, (1979).
[17] Rutter, J. , The group of homotopy self-equivalences of non-simply-connected spaces using Postnikov decompositions , I.H.E.S. preprint, (1990). · Zbl 0747.55004 · doi:10.1017/S0308210500014979
[18] Shih, W. , On the group of equivalences maps . Bull. Amer. Math. Soc., 492, 361-365, (1964). · Zbl 0129.38803 · doi:10.1090/S0002-9904-1964-11097-1
[19] Smith, L. , Lectures on the Eilenberg-Moore Spectral Sequence . LNM 134, (1970). · Zbl 0197.19702 · doi:10.1007/BFb0060347
[20] Stasheff, J.D. , A classification theorem for fibre spaces . Topology 2, 239-246, (1963). · Zbl 0123.39705 · doi:10.1016/0040-9383(63)90006-5
[21] Vogel, P. , On Steenrod’s problem for non-abelian finite groups . LNM 1051, 660-665, (1984). · Zbl 0545.57016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.