Characterization of the local Langlands conjecture by \(\varepsilon\)-factors for pairs. (Caractérisation de la correspondance de Langlands locale par les facteurs \(\varepsilon\) de paires.) (French) Zbl 0810.11069

Let \(F\) be a non-archimedean local field with finite residue field. In the equal characteristic case G. Laumon, M. Rapoport and U. Stuhler [\(D\)-elliptic sheaves and the Langlands correspondence, Invent. Math. 113, 217-338 (1993; Zbl 0809.11032), Theorem 15.7] construct bijections \({\mathcal A}_ F^ 0(n) \leftrightarrow {\mathcal G}_ F^ 0 (n)\), \(\pi\mapsto \sigma_ \pi\) between irreducible supercuspidal representations of \(\text{GL}_ n(F)\) with finite central character and \(n\)-dimensional irreducible representations of the Galois group \(G_ F= \text{Gal} (\overline{F}/ F)\) resp. for all \(n\geq 1\). The main properties of these bijections are \[ L(\pi\times \pi',s)= L(\sigma_ \pi\otimes \sigma_{\pi'},s), \qquad \varepsilon(\pi\times \pi',s,\psi)= \varepsilon(\sigma_ \pi\otimes \sigma_{\pi'}, s,\psi), \] means that \(L\)- and \(\varepsilon\)-factors of pairs are preserved. In the paper under review the author proves the following uniqueness statement, which is stated in terms of the map \(\sigma\mapsto \pi_ \sigma\) in opposite direction:
Theorem 1.2: Let \(n\geq 2\) be an integer and let \(\sigma\in {\mathcal G}_ F^ 0 (n)\), \(\pi\in {\mathcal A}_ F^ 0 (n)\) have the property \[ \varepsilon(\pi\times \pi_ \tau, s,\psi)= \varepsilon(\sigma\otimes \tau,s,\psi) \] for all \(\tau\in {\mathcal G}_ F^ 0(r)\), \(r=1,\dots, n-1\). Then \(\pi\cong \pi_ \sigma\).
The proof is by reduction to
Theorem 1.1: Let \(n\geq 2\) be an integer and let \(\pi\), \(\pi'\) be irreducible generic representations of \(\text{GL}_ n(F)\). Then the equality of “Gamma factors” \(\gamma(\pi\times \tau,s,\psi)= \gamma(\pi'\times \tau, s,\psi)\) for all irreducible generic representations \(\tau\) of \(\text{GL}_{n-1}(F)\) implies \(\pi\cong \pi'\).
The last theorem does not depend on \(\text{char}(F)\) but uses the fact that irreducible generic representations \(\pi\) have a Whittaker model \({\mathcal W} (\pi,\psi)\) and that certain complex valued smooth functions \(H\) on \(\text{GL}_ n(F)\) vanish if the integration of \(H\) against Whittaker functions \(W\in {\mathcal W}(\pi, \psi)\) is always trivial (due to Jacquet, Piatetski-Shapiro, Shalika).
We note a misprint on p. 346, line 4, which sould read: \((\rho(g) W)^ \sim (h)= (\rho(g) W)(w_ n^ t h^{-1})\).
Reviewer: E.-W.Zink (Berlin)


11S37 Langlands-Weil conjectures, nonabelian class field theory
22E50 Representations of Lie and linear algebraic groups over local fields


Zbl 0809.11032
Full Text: DOI EuDML


[1] [BZ] Bernstein, I.N., Zelevinsky, A.V.: Representations of the group GL(n, F), whereF is a local non-archimedean field. Usp. Mat. Nauk31 (no3). 5-70 (1976)
[2] [De] Deligne, P.: Les constantes des équations fonctionnelles des fonctionsL In: Deligne, P., Kuyk, W. (eds.) Modular functions of one variable II (Lect. Notes., Math., vol. 348, pp. 501-597) Berlin Heidelberg New York: Springer 1973
[3] [GK] Gelfand, I.M., Kazhdan, D.A.: Representations of Gl(n, K) In: Gelfand, I.M. (ed.) Lie groups and their representations 2, pp. 95-118. Budapest: Akademia Kiado
[4] [He] Henniart, G.: La correspondance de Langlands locale: caractérisation et propriétés fonctorielles (en préparation)
[5] [JL] Jacquet, H., Langlands, R.P.: Automorphic forms on GL (2). (Lect. Notes Math., vol. 114) Berlin Heidelberg New York: Springer 1971 · Zbl 0261.12010
[6] [JPS 1] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Automorphic forms on GL (3), Ann. Math.109, 169-258 (1979) · Zbl 0401.10037
[7] [JPS 2] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: FacterusL et ? du groupe linéaire. C.R. Acad. Sci., Paris289, 59-61 (1979) · Zbl 0448.10022
[8] [JPS 3] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Conducteur des représentations du groupe linéaire. Math. Ann.256, 199-214 (1981) · Zbl 0451.22011
[9] [JPS 4] Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Rankin-Selberg convolutions, Am. J. Math.105, 367-483 (1983) · Zbl 0525.22018
[10] [JS] Jacquet, H., Shalika, J.: A lemma on highly ramified ?-factors. Math. Ann.271, 319-332 (1985) · Zbl 0556.12004
[11] [LRS] Laumon, G., Rapoport, M., Stuhler, U.: \(D\) -elliptic sheaves and the Langlands correspondence. Invent. Math. (in press) · Zbl 0809.11032
[12] [Ze] Zelevinsky, A.V.: Induced representations of reductivep-adic groups II. On irreducible representations of GL(n). Ann. Sci. Ec. Norm. Supér., IV. Sér.13, 165-210 (1980) · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.