×

Remarks on the universal covering of compact Kähler manifolds. (Remarques sur le revêtement universel des variétés kählériennes compactes.) (French) Zbl 0810.32013

For \(X\) a compact Kähler manifold, the author studies relationships between \(\pi_ 1 (X)\), the positivity of \(\Omega^ 1_ X\) and generic compact subvarieties of the universal cover \(\widetilde X\) of \(X\), first considered by M. Gromov [J. Differ. Geom. 3, No. 1, 263-292 (1991; Zbl 0719.53042)]. One gives in the first section a new proof for the fact that a K3 surface is simply connected and, in the second section, it is proved that \(\pi_ 1 (X)\) is finite if \(X\) is simple. In the third section it is shown the existence of a \(\widetilde \Gamma\)-reduction \(\widetilde \gamma : \widetilde X \to \widetilde Z\) for any connected compact Kähler manifold (analogous to the Stein reduction), where \(\widetilde Z\) parametrises essentially the maximal connected compact complex subvarieties of \(\widetilde X\). The \(\Gamma\)-reduction \(\gamma : X \to Z = \widetilde Z/ \Gamma\) \((\Gamma : = \pi_ 1 (X))\) obtained by taking the quotients, gives a new bimeromorphic invariant \(gd(X) : = \dim Z\), named \(\Gamma\)-dimension of \(X\). The main result of the fourth section is the following: If \(\chi ({\mathcal O}_ X) \neq 0\) and if \(gd(X) = n \leq 3\), then \(X\) is of general type (i.e. \(k(X) = n = gd(X))\). In the fifth section a geometric criterion for the finiteness of the fundamental group \(\pi_ 1 (X)\) is given. As a corollary, a simple proof is obtained for the fact that a rationally connected compact Kähler manifold is simply connected.

MSC:

32J27 Compact Kähler manifolds: generalizations, classification
32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
14E20 Coverings in algebraic geometry
53C55 Global differential geometry of Hermitian and Kählerian manifolds

Citations:

Zbl 0719.53042
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] ATIYAH (M.) . - Elliptic operators , discrete groups and Von Neumann algebras, Soc. Math. France, Astérisque, t. 32-33, 1976 , p. 43-72. Zbl 0323.58015 · Zbl 0323.58015
[2] BARLET (D.) . - Espace analytique des cycles... , Lect. Notes Math., t. 482, 1975 , p. 1-158. MR 53 #3347 | Zbl 0331.32008 · Zbl 0331.32008
[3] BARTH (W.) , PETERS (C.) , VON DE VEN (A.) . - Compact complex surfaces , Ergeb. Math. Grenzgeb., t. 4, 1984 . MR 86c:32026 | Zbl 0718.14023 · Zbl 0718.14023
[4] BLANCHARD (A.) . - Sur les variétés analytiques complexes , Ann. Scient. École Nor. Sup., t. 73, 1958 , p. 157-202. Numdam | MR 19,316e | Zbl 0073.37503 · Zbl 0073.37503
[5] CAMPANA (F.) . - Coréduction algébrique d’un espace analytique faiblement kählérien compact , Invent. Math., t. 63, 1981 , p. 187-223. MR 84e:32028 | Zbl 0436.32024 · Zbl 0436.32024
[6] CAMPANA (F.) . - Twistor spaces of class C , J. Differential Geom., t. 33, 1991 , p. 541-549. MR 92g:32059 | Zbl 0694.32017 · Zbl 0694.32017
[7] CAMPANA (F.) . - Réduction d’Albanese d’un morphisme kählérien propre , I et II, Compositio Math., t. 54, 1985 , p. 373-398 et 399-416. Numdam | MR 87h:32058 | Zbl 0609.32008 · Zbl 0609.32008
[8] CAMPANA (F.) . - Connexité rationnelle des variétés de Fano , Ann. Scient. École Nor. Sup., t. 25, 1992 , p. 539-545. Numdam | MR 93k:14050 | Zbl 0783.14022 · Zbl 0783.14022
[9] CAMPANA (F.) . - Fundamental group and positivity properties of cotangent sheaves of compact Kähler manifolds , à paraître au J. Alg. Geometry. · Zbl 0845.32027
[10] CATANESE (F.) . - Moduli and classification of irregular Kähler manifolds... , Invent. Math., t. 104, 1991 , p. 263-289. MR 92f:32049 | Zbl 0743.32025 · Zbl 0743.32025
[11] FUJIKI (A.) . - Semi-simple reductions of compact complex varieties , Pub. Institut Élie Cartan, t. 8, 1983 , p. 79-133. MR 85m:32027 | Zbl 0562.32014 · Zbl 0562.32014
[12] SÉMINAIRE de Géométrie Analytique . - Pub. Institut Élie Cartan, 5, 1982 .
[13] GROMOV (M.) . - Kähler hyperbolicity and L2-Hodge theory , J. Differential Geom., t. 33, 1991 , p. 263-292. MR 92a:58133 | Zbl 0719.53042 · Zbl 0719.53042
[14] GURJAR (R.V.) . - Coverings of algebraic varieties in algebraic geometry , Sendai ( 1985 ), Adv. Stud. Pure Math. 10, T. Oda. éd., p. 179-183. MR 90e:14012 | Zbl 0659.14011 · Zbl 0659.14011
[15] HIRZEBRUCH (F.) . - Topological methods in algebraic geometry . - Springer Verlag, 1978 . · Zbl 0376.14001
[16] KAWAMATA (Y.) . - Abundance theorem for minimal threefolds , Preprint Univ. Tokyo, 1991 . · Zbl 0777.14011
[17] KODAIRA (K.) . - A theorem of completeness... , Ann. of Math., t. 75, 1962 , p. 146-162. MR 24 #A3665b | Zbl 0112.38404 · Zbl 0112.38404
[18] KOLLAR (J.) . - Shafavavitch maps and plurigenera of algebraic varieties , Preprint, 1992 .
[19] KOLLAR (J.) , MIYAOKA (Y.) , MORI (S.) . - Rationally connected varieties , J. Alg. Geometry, 1, 1992 , p. 429-448. MR 93i:14014 | Zbl 0780.14026 · Zbl 0780.14026
[20] KOLLAR (J.) , MIYAOKA (Y.) , MORI (S.) . - Boundedness and rational connectedness of Fano manifolds , Preprint, 1991 .
[21] LELONG (P.) . - Intégration sur un ensemble analytique , Bull. Soc. Math. France, t. 85, 1957 , p. 239-262. Numdam | MR 20 #2465 | Zbl 0079.30901 · Zbl 0079.30901
[22] LIEBERMAN (D.) . - Compactness of the Chow scheme , Lect. Notes Math., t. 670, 1977 , p. 140-186. MR 80h:32056 | Zbl 0391.32018 · Zbl 0391.32018
[23] MIYAOKA (Y.) . - On the Kodaira dimension of minimal threefolds , Math. Ann., t. 281, 1988 , p. 325-332. MR 89g:14028 | Zbl 0625.14023 · Zbl 0625.14023
[24] MIYAOKA (Y.) . - Abundance conjecture for 3-folds. Case v = 1 , Comp. Math., t. 68, 1988 , p. 203-220. Numdam | MR 89m:14023 | Zbl 0681.14019 · Zbl 0681.14019
[25] MORI (S.) . - Flip theorem and the existence of minimal models for 3-folds , J. Amer. Math. Soc., t. 1, 1988 , p. 117-253. MR 89a:14048 | Zbl 0649.14023 · Zbl 0649.14023
[26] NORI (M.V.) . - Zariski’s conjecture and related problems. , Ann. Scient. École Nor. Sup., t. 16, 1983 , p. 305-344. Numdam | MR 86d:14027 | Zbl 0527.14016 · Zbl 0527.14016
[27] RAN (Z.) . - On subvarieties of Abelian varieties , Inv. Math., t. 62, 1981 , p. 459-479. MR 82d:14024 | Zbl 0474.14016 · Zbl 0474.14016
[28] REID (M.) . - Bogomolov’s theorem c21 \leq 4c2 . - Int. Symp. Alg. Geom. Kyoto, 1977 . Zbl 0478.14003 · Zbl 0478.14003
[29] SHAFAVEVITCH (R.I.) . - Basic Algebraic Geometry . - Springer-Verlag, 1977 .
[30] UENO (K.) . - Classification theory of algebraic varieties and compact complex spaces , Lect. Notes Math., t. 439. MR 58 #22062 | Zbl 0299.14007 · Zbl 0299.14007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.