Nonlinear oscillations of hyperbolic systems: Methods and qualitative results. (Oscillations non linéaires des systèmes hyperboliques: Méthodes et résultats qualitatifs.) (French) Zbl 0810.35060

Summary: The author studies the Cauchy problem for hyperbolic systems of first order conservation laws \(\partial_ t u+ \partial_ x f(u)=0\), with an oscillating sequence of initial data. The oscillations have an \(O(1)\) amplitude; one may think to \(u^ \varepsilon (x,0)= a(x; {x/ \varepsilon})\), where \(a(x,.)\) is periodic. It turns out that one part of the initial oscillations are killed because of genuine nonlinearity. But the most of the physically relevant systems are endowed with at least one linearly degenerate characteristic field, which allows oscillations of a part of the field \(u\).


35L65 Hyperbolic conservation laws
76E30 Nonlinear effects in hydrodynamic stability
76Q05 Hydro- and aero-acoustics
Full Text: DOI Numdam EuDML


[1] Ball, J. M., Constitutive inequalities and existence theorems in non-linear elastostatics, (Knops, Nonlinear Analysis and Mechanics. Herriot-Watt Symposium, vol. I, (1976), Pitman Edinburgh), 187-241 · Zbl 0377.73043
[2] Bonnefille, M., Thèse, (1987), Saint-Étienne France
[3] Bonnefille, M., Propagation des oscillations dans deux classes de systèmes hyperboliques (2 × 2 et 3 × 3), Comm. in PDEs, vol. 13, 905-925, (1988) · Zbl 0649.35058
[4] Chueh, K. N.; Conley, C. C.; Smoller, J. A., Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., vol. 26, 373-392, (1977) · Zbl 0368.35040
[5] B. D. Coleman et E. H. Dill, {\it Z. Angew. Math. Phys}., vol. 22, 1971, p. 691-702. · Zbl 0218.35072
[6] Dafermos, C., Estimates for conservation laws with little viscosity, S.I.A.M. J. Math. Anal., vol. 18, (1987) · Zbl 0655.35055
[7] DiPerna, R. J., Uniqueness of solutions to hyperbolic systems of conservation laws, Indiana Univ. Math. J., vol. 28, 137-188, (1979) · Zbl 0409.35057
[8] DiPerna, R. J., Convergence of approximate solutions to conservation laws, Arch Rat. Mech. Anal., vol. 82, 27-70, (1983) · Zbl 0519.35054
[9] DiPerna, R. J., Measured-valued solutions to conservation laws, Arch. Rat. Mech. Anal., vol. 88, 223-270, (1985) · Zbl 0616.35055
[10] Gilquin, H. G., Glimm’s scheme and conservation laws of mixed type, S.I.A.M. J. Sci. Stat. Comput., vol. 10, 133-153, (1989) · Zbl 0668.73017
[11] H. G. Gilquin et D. Serre, Well-Posedness of the Riemann Problem; Consistency of the Godunov’s Scheme. {\it Proceeding of an A.M.S.-S.I.A.M. conference}, Bowdoin college, 1988, Glimm, Keyfitz et Lindquist éd., Contemporary Mathematics n° 100.AMS, Providence, 1989. · Zbl 0685.65085
[12] Glimm, J., Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Maths., vol. 18, 697-715, (1965) · Zbl 0141.28902
[13] Hou, T. Y., Homogenization for semilinear hyperbolic systems with oscillatory data, Comm. Pure Appl. Maths., vol. 41, 471-495, (1988) · Zbl 0632.35039
[14] E. Isaacson et B. Temple, {\it The Structure of Asymptotic States in a Singular System of Conservation Laws} (à paraître). · Zbl 0717.35053
[15] Joly, J. L., Sur la propagation des oscillations par un système hyperbolique semi-linéaire en dimension 1 d’espace, {\it CR. Acad. Sci. Paris}, t, 296, série I, 669-672, (1983) · Zbl 0555.35081
[16] Keyfitz, B. L.; Kranzer, H. C., A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal., vol. 72, 219-241, (1980) · Zbl 0434.73019
[17] Kruzkov, S. N., First order quasilinear equations in several independent variables, Mat. Sbornik, vol. 81, 217-243, (1970) · Zbl 0215.16203
[18] Lax, P. D., Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Maths., vol. 10, 537-566, (1957) · Zbl 0081.08803
[19] P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, {\it S.I.A.M. series}, 1973, Philadelphia. · Zbl 0268.35062
[20] McLaughlin, D.; Papanicolaou, G.; Tartar, L., Weak limits of semi-linear hyperbolic systems with oscillating data, {\it macroscopic modelling of turbulent flows}, Nice, Lect. Notes Phys., n° 230, 277-298, (1984), Springer-Verlag Heidelberg
[21] Murat, F., Compacité par compensation, {\it Ann. Scuola Norm. Pisa}, cl. di Sc., série IV, vol. 5, 489-507, (1978) · Zbl 0399.46022
[22] Murat, F., L’injection du cône positif de H^{−1} dans W^{−1, {\it q}} est compacte pour tout {\it q} < 2, J. Math. Pures et Appl., {\it t}, 60, 309-322, (1981) · Zbl 0471.46020
[23] Pego, R. L.; Serre, D., Instabilities in glimm’s scheme for two systems of mixed type, S.I.A.M. J. Num. Anal., vol. 25, 965-988, (1988) · Zbl 0663.73010
[24] Rascle, M.; Serre, D., Compacité par compensation et systèmes hyperboliques de lois de conservation. applications, {\it CR. Acad. Sci., Paris}, t, 299, série I, 673-676, (1984) · Zbl 0578.35056
[25] Saville, D. A.; Palusinski, O. A., Theory of electrophoretic separations, parts 1 et 2, A.I.C.H.E. J., vol. 32, (1986)
[26] Schochet, S., Examples of measure-valued solutions, Comm. in PDEs, vol. 14, 545-575, (1989) · Zbl 0682.35068
[27] D. Serre, Systèmes hyperboliques riches de lois de conservation, Collège de France, {\it Seminar X. Pitman Res. Notes Math. Ser}., Longman (à paraître). · Zbl 0870.35067
[28] D. Serre, Large Oscillations in Hyperbolic Systems of Conservation Laws, {\it Rend. Sem. Mat}., Univ. Pol. Torino, Fascicolo speciale 1988, {\it Hyperbolic equations}, 1987, p. 185-201. · Zbl 0678.35066
[29] D. Serre, Propagation des oscillations dans les systèmes hyperboliques non linéaires, {\it Nonlinear Hyperbolic Problems}, Proceedings, Saint-Étienne, 1986, {\it Lecture Notes in Maths}, n° 1270, Springer-Verlag, 1987. · Zbl 0653.35056
[30] Serre, D., Domaines invariants pour LES systèmes hyperboliques de lois de conservation, J. Diff. Eq., 69, 46-62, (1987) · Zbl 0626.35061
[31] Serre, D., LES ondes planes en électromagnétisme non linéaire, Physica D, vol. 31, 227-251, (1988) · Zbl 0736.35133
[32] Serre, D., Un système hyperbolique non linéaire avec des données oscillantes, CR. Acad. Sci., Paris, {\it t}, 302, série I, 115-168, (1986) · Zbl 0606.35050
[33] Serre, D., Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation, J. Diff. Eq., vol. 68, 137-168, (1987) · Zbl 0627.35062
[34] Serre, D., La compacité par compensation pour LES systèmes hyperboliques non linéaires de deux équations à une dimension d’espace, J. Math. Pures et Appl., {\it t}, 65, 423-468, (1986) · Zbl 0601.35070
[35] Serre, D., Compacité par compensation et systèmes hyperboliques de lois de conservation, CR. Acad. Sci., Paris, {\it t}, 299, série I, 555-558, (1984) · Zbl 0578.35055
[36] D. Serre, Richness and the Classification of Quasilinear Hyperbolic systems, {\it I.M.A. volumes in Mathematics and its applications n}° 29, J. Glimm & A. Majda éds., Springer-Verlag, Heidelberg.
[37] Serre, D., Systèmes d’EDO invariants sous l’action de systèmes hyperboliques d’edps, Ann. Inst. Fourier, vol. 39, 953-968, (1989) · Zbl 0687.35006
[38] L. Tartar, Compensated Compactness and Applications to PDEs, {\it Nonlinear Analysis et Mechanics}, Herriot Watt Symposium, 1979, {\it Pitman Res. Notes Maths}. · Zbl 0437.35004
[39] L. Tartar, {\it Cours Peccot}, Collège de France, non publié.
[40] Temple, B., Systems of conservation laws with invariant submanifolds, Trans. A.M.S., vol. 280, 781-795, (1983) · Zbl 0559.35046
[41] Venttsel’, T. D., Estimates of solutions of the one-dimensional system of equations of gas dynamics with “viscosity” not depending on “viscosity”, J. Soviet Maths, vol. 31, 3148-3153, (1985) · Zbl 0575.76076
[42] Wagner, D. H., Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Diff. Eq., vol. 68, 118-136, (1967) · Zbl 0647.76049
[43] J. Duchon et R. Robert, Élargissement diphasique d’une nappe tourbillonaire en dynamique du fluide parfait incompressible, Preprint, Equipe d’Analyse Numérique Lyon-I, n° 64, 1987. · Zbl 0631.76019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.