New lower semicontinuity results for polyconvex integrals. (English) Zbl 0810.49014

The paper deals with integral functionals of the form \(F(u,\Omega)= \int_ \Omega f(\nabla u)dx\) initially defined for \(u\in C^ 1(\Omega; \mathbb{R}^ k)\), \(\Omega\subseteq \mathbb{R}^ n\). The function \(f\) is assumed to be polyconvex in the sense of Ball, i.e., there exists a convex function \(g\) defined in the space of all \(n\)-vectors of \(\mathbb{R}^ n\times \mathbb{R}^ k\), such that \(f(A)= g({\mathcal M}(A))\) for every \(k\times n\) matrix \(A\), where \({\mathcal M}(A)\) is the \(n\)-vector whose components are the determinants of all minors of the matrix \(A\). The aim of the paper is to study the \(L^ 1(\Omega; \mathbb{R}^ k)\)-lower semicontinuous extension \(\mathcal F\) for \(F\) defined as the greatest lower semicontinuous functional on \(L^ 1(\Omega; \mathbb{R}^ k)\) which is less or equal to \(F\), where \(F(u,\Omega) \triangleq +\infty\;\forall u\in L^ 1(\Omega; \mathbb{R}^ k)\backslash C^ 1(\Omega; \mathbb{R}^ k)\). It is shown that, if the polyconvex function \(f\) satisfies the inequality \[ c_ 0| {\mathcal M}(A)|\leq f(A)\leq c_ 1(|{\mathcal M}(A)|+1) \] with \(0< c_ 0\leq c_ 1\), then for every function \(u\in \text{BV}(\Omega; \mathbb{R}^ k)\) with \(\int_ \Omega| {\mathcal M}(\nabla u)| dx< \infty\) the integral representation \[ {\mathcal F}(u,\Omega)= \int_ \Omega f(\nabla u) dx \] holds. At the same time an example is given which shows that when \(f(A)= | {\mathcal M}(A)|\) and \(k\geq 2\), the set function \(\Omega\to {\mathcal F}(u,\Omega)\) is not subadditive if \(u\) is an arbitrary function of \(\text{BV}_{\text{loc}}(\mathbb{R}^ n; \mathbb{R}^ k)\) so that the functional \(u\to {\mathcal F}(u,\Omega)\) cannot be represented by an integral over \(\Omega\). Moreover, a counterexample to the subadditivity of \(\Omega\to {\mathcal F}(u,\Omega)\) is constructed where \(u\in W^{1,p}_{\text{loc}}(\mathbb{R}^ n; \mathbb{R}^ k)\) and \(p< \min\{n,k\}\).


49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI


[1] Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal.63 (1977) 337-403 · Zbl 0368.73040
[2] Ball J.M., Murat F.:W 1,p -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225-253, and66 (1986) 439-439 · Zbl 0549.46019
[3] Brezis H., Coron J.M., Lieb E.H.: Harmonic maps with defects. Comm. Math. Phys.107 (1986) 679-705 · Zbl 0608.58016
[4] Buttazzo G.: Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow, 1989 · Zbl 0669.49005
[5] Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, Berlin Heidelberg New York, 1989 · Zbl 0703.49001
[6] De Giorgi E.: Riflessioni su alcuni problemi variazionali. Equazioni Differenziali e Calcolo delle Variazioni (Pisa, 1991)
[7] De Giorgi E.: On the relaxation of functionals defined on cartesian manifolds, 33-38, Plenum Press, New York, 1992. Developments in Partial Differential Equations and Applications to Mathematical Physics (Ferrara, 1991) · Zbl 0895.49019
[8] Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam, 1976 · Zbl 0322.90046
[9] Federer H.: Geometric Measure Theory. Springer, Berlin Heidelberg New York, 1969 · Zbl 0176.00801
[10] Giaquinta M., Modica G., Sou?ek J.: Cartesian currents, weak diffeomorphisms and nonlinear elasticity. Arch. Rational Mech. Anal.106 (1989) 97-159 · Zbl 0677.73014
[11] Giaquinta M., Modica G., Sou?ek J.: Cartesian currents and variational problems for mappings into spheres. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)16 (1989) 393-485 · Zbl 0713.49014
[12] Giaquinta M., Modica G., Sou?ek J.: Erratum and addendum to ?Cartesian currents, weak diffeomorphisms and nonlinear elasticity?. Arch. Rational Mech. Anal.109 (1990) 385-392 · Zbl 0712.73009
[13] Giaquinta M., Modica G., Sou?ek J.: Graphs of finite mass which cannot be approximated in area by smooth graphs. Manus. Math.78 (1993) 259-271 · Zbl 0796.58006
[14] Giusti E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston Basel, 1984 · Zbl 0545.49018
[15] Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J.31 (1964) 159-178 · Zbl 0123.09804
[16] Lebesgue H.: Integrale, longeur, aire. Ann. Mat. Pura Appl.7 (1902) 231-359 · JFM 33.0307.02
[17] Luckhaus S., Modica L.: The Gibbs-Thompson relation within the gradient theory of phase transitions. Archive Rational Mech. Anal.107 (1989) 71-83 · Zbl 0681.49012
[18] Müller S.: Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris Sèr. I Math.307 (1988) 501-506 · Zbl 0679.34051
[19] Meyers N.G., Serrin J.: H=W. Proc. Nat. Acad. Sci. U.S.A.51 (1964) 1055-1056 · Zbl 0123.30501
[20] Miranda M.: Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)18 (1964) 515-542 · Zbl 0152.24402
[21] Morrey C.B. Jr.: Quasi-convexity and the semicontinuity of multiple integrals. Pacific J. Math.2 (1952) 25-53 · Zbl 0046.10803
[22] Morrey C.B. Jr.: Multiple Integrals in the Calculus of Variations. Springer, Berlin Heidelberg New York, 1966 · Zbl 0142.38701
[23] Reshetnyak Yu.G.: Weak convergence of completely additive vector functions on a set. Siberian Math. J.9 (1968) 1039-1045 · Zbl 0176.44402
[24] Serrin J.: On the definition and properties of certain variational integrals. Trans. Am. Math. Soc.101 (1961) 139-167 · Zbl 0102.04601
[25] Simon L.M.: Lectures on Geometric Measure Theory. Proc. of the Centre for Mathematical Analysis (Canberra), Australian National University, 3, 1983 · Zbl 0546.49019
[26] Vainberg M.M.: Variational Methods for the Study of Non-Linear Operators. Holden-Day, San Francisco, 1964
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.