×

Killing spinors on Kähler manifolds. (English) Zbl 0810.53033

Summary: In the paper Kählerian Killing spinors are defined and their basic properties are investigated. Each Kähler manifold that admits a Kählerian Killing spinor is Einstein of odd complex dimension. Kählerian Killing spinors are a special kind of Kählerian twistor spinors. Real Kählerian Killing spinors appear for example, on closed Kähler manifolds with the smallest possible first eigenvalue of the Dirac operator. For the complex projective spaces \(\mathbb{C} P^{2l - 1}\) and the complex hyperbolic spaces \(\mathbb{C} H^{2l - 1}\) with \(l > 1\) the dimension of the space of Kählerian Killing spinors is equal to \(\left ( \begin{smallmatrix} 2l\\ l\end{smallmatrix} \right)\). It is shown that in complex dimension 3 the complex hyperbolic space \(\mathbb{C} H^ 3\) is the only simple connected complete spin Kähler manifold admitting an imaginary Kählerian Killing spinor.

MSC:

53C20 Global Riemannian geometry, including pinching
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
Full Text: DOI

References:

[1] Baum, H.; Friedrich, T.; Grunewald, R.; Kath, I.:Twistor and Killing spinors on Riemannian manifolds. Teubner-Texte zur Mathematik, Band 124, B.G. Teubner Verlagsgesellschaft 1991. · Zbl 0734.53003
[2] Baum, H.: Variétés riemanniennes admettant des spineurs de Killing imaginaires.C.R. Acad. Sci. Paris Sér. I,309 (1989), 47-49. · Zbl 0676.53053
[3] Baum, H.: Odd-dimensional Riemannian manifolds with imaginary Killing spinors.Ann. Global Anal. Geom. 7 (1989), 141-154. · Zbl 0708.53039 · doi:10.1007/BF00127864
[4] Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors.Ann. Global Anal. Geom. 7 (1989), 205-226. · Zbl 0694.53043 · doi:10.1007/BF00128299
[5] Cahen, M.;Gutt, S.;Lemaire, L.;Spindel, P.: Killing spinors.Bull. Soc. Math. Belg. Sér. A 38 (1986), 75-102. · Zbl 0631.53050
[6] Cahen, M.;Franc, A.;Gutt, S.: Spectrum of the Dirac operator on Complex Projective SpaceP 2q?1( \(\mathbb{C}\) ).Lett. Math. Phys. 18 (1989), 165-176. · Zbl 0706.58010 · doi:10.1007/BF00401871
[7] Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung.Math. Nachr. 97 (1980), 117-146. · Zbl 0462.53027 · doi:10.1002/mana.19800970111
[8] Friedrich, T.: Riemannian manifolds with small eigenvalue of the Dirac operator. Proceedings of the ?27. Mathematische Arbeitstagung?, Bonn 12.?19. Juli 1987 (Preprint MPI)
[9] Friedrich, T.: On the conformal relations between twistor and Killing spinors.Suppl. Rend. Circ. Mat. Palermo (1989), 59-75.
[10] Friedrich, T.;Grunewald, R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds.Ann. Global Anal. Geom. 3 (1985), 265-273. · Zbl 0577.58034 · doi:10.1007/BF00130480
[11] Friedrich, T.;Kath, I.: Variétés riemanniennes compactes de dimension 7 admettant des spineurs de Killing.C.R. Acad. Sci. Paris Sér. I 307 (1988), 967-969. · Zbl 0659.53017
[12] Grunewald, R.: Six-dimensional Riemannian manifolds with a real Killing spinor.Ann. Global Anal. Geom. 8 (1990), 43-59. · Zbl 0704.53050 · doi:10.1007/BF00055017
[13] Gutt, S.: Killing spinors on spheres and projective spaces. In: ?Spinors in Physics and Geometry? World. Sc. Publ. Co., Singapore 1988.
[14] Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors.Comm. Math. Phys. 104 (1986), 151-162. · Zbl 0593.58040 · doi:10.1007/BF01210797
[15] Hijazi, O.: Caractérisation de la sphére par les premières valeurs propres de l’opérateur de Dirac en dimension 3,4,7 et 8.C.R. Acad. Sci. Paris Sér. I 303 (1986), 417-419. · Zbl 0606.53024
[16] Hijazi, O., Lichnerowicz, A.: Spineurs harmonique, spineurs-twisteurs et géométric conforme.C.R. Acad. Sci. Paris Sér. I 307, (1988), 833-838. · Zbl 0659.53016
[17] Hitchin, N.: Harmonic spinors.Adv. in Math. 14 (1974), 1-55. · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[18] Kirchberg, K.-D.: An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds with positive scalar curvature.Ann. Global Anal. Geom. 4 (1986), 291-326. · Zbl 0629.53058 · doi:10.1007/BF00128050
[19] Kirchberg, K.-D.: Compact six-dimensional Kähler spin manifolds of positive scalar curvature with the smallest possible first eigenvalue of the Dirac operator.Math. Ann. 282 (1988), 157-176. · Zbl 0628.53061 · doi:10.1007/BF01457018
[20] Kirchberg, K.-D.: The first eigenvalue of the Dirac operator on Kähler manifolds.J. Geom. Phys. 7 (1990), 449-468. · Zbl 0734.53050 · doi:10.1016/0393-0440(90)90001-J
[21] Kobayashi, S.;Nomizu, K.:Foundations of Differential Geometry. Vol. I and II. Intersc. Publ. J. Wiley & Sons, New York - London 1963, 1969. · Zbl 0119.37502
[22] Lawson, H.B.;Michelson, M.L.:Spin Geometry. Princeton University Press, Princeton, New Jersey 1989.
[23] Lichnerowicz, A.: Spin manifolds, Killing spinors and universality of the Hijazi inequality.Lett. Math. Phys. 13 (1987), 331-344. · Zbl 0624.53034 · doi:10.1007/BF00401162
[24] Lichnerowicz, A.: Les spineurs-twisteurs sur une variété spinorielle compacte.C.R. Acad. Sci. Paris Sér. I 306, (1988), 381-385. · Zbl 0641.53014
[25] Lichnerowicz, A.: Sur les résultates de H. Baum et T. Friedrich concernant les spineurs de Killing à valeur propre imaginaire.C.R. Acad. Sci. Paris 306,Serie I (1989), 41-45. · Zbl 0676.53052
[26] Lichnerowicz, A.: La premiere valeur propre de l’opérateur de Dirac pour une variété Kählerienne et son cas limite.C.R. Acad. Sci. Paris Sér. I 311, (1990), 717-722. · Zbl 0713.53040
[27] Lichnerowicz, A.: Spineurs harmoniques et spineurs-twisteurs en Géométrie Kählerienne et konforme Kählerienne.C.R. Acad. Sci. Paris Sér. I 311, (1990), 883-887. · Zbl 0714.53041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.