Terasoma, Tomohide A product formula for period integrals. (English) Zbl 0811.32014 Math. Ann. 298, No. 4, 577-589 (1994). For \(n \geq 2\) let \(\lambda_ i\) be \(n\) distinct complex numbers and \(B^{(i)}\) be \(n\) \((r \times r)\)-matrices of complex numbers. Let \(P\) denote the differential operator \(\sum^ n_{i = 1} B^{(i)} / (x - \lambda_ i) dx_ i\). The main result of the paper is an exact formula for the determinant of the period mapping between the de Rham cohomology with compact support of \(\mathbb{C} - \{\lambda_ 1, \dots, \lambda_ n\}\) and the relative cohomology with local coefficients given by the differential equation \(dF = PF\) in terms of the local data of the \(\lambda_ i\)’s and \(\infty\) under some genericity conditions. This formula is an analogue of a formula of G. Laumon [Publ. Math., Inst. Hautes Etud. Sci. 65, 131-210 (1987; Zbl 0641.14009)] in the context of \(\ell\)-adic cohomology. As a special case (\(n = 2\), \(r = 1\), \(\lambda_ 1 =0\), \(\lambda_ 2 = 1\), \(P = \left({\alpha \over t} + {\beta \over t - 1}\right)dt)\) one recovers Euler’s formula \(B(\alpha \beta) = \Gamma(\alpha) \Gamma(\beta) /\Gamma(\alpha + \beta)\). The main idea of the proof is to show that the determinant of the Fourier transform is of the form \(c_ 0 t^ b \exp (kt)\) for some constants \(c_ 0\), \(b\), and \(k\). Reviewer: H.Lange (Erlangen) Cited in 1 ReviewCited in 5 Documents MSC: 32G34 Moduli and deformations for ordinary differential equations (e.g., Knizhnik-Zamolodchikov equation) 32G20 Period matrices, variation of Hodge structure; degenerations 14F40 de Rham cohomology and algebraic geometry Keywords:determinant; period mapping; cohomology; Fourier transform Citations:Zbl 0641.14009 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Anderson, G.: Local factorization of determinant of twisted DR cohomology group. Compat. Math.83, 69-105 (1992) · Zbl 0780.14011 [2] Coddington, E., Levinson, N.: Theory of Ordinary differential Equations. New York Toronto London: McGrawhill 1955 · Zbl 0064.33002 [3] Deligne, P., Y. Ihara et al. (eds.): Le Groupe Fondamental de la Droite Projective Moins Trois points, in Galoins Groups overQ. (M.S.R.I. Publ. 79-297) Berlin Heidelberg New York: Springer 1989 [4] Laumon, G.: Transformations de Fourier constantes d’equations fonctionnelles et conjecture de Weil. Publ. Math. Inst. Hautes Etud. Sci.65, 131-210 (1987) · Zbl 0641.14009 · doi:10.1007/BF02698937 [5] Loeser, F.: Arrangements d’hyperplans et sommes de Gauss. Ann. Sci. Ec. Norm. Sup?r., IV. S?r.24, 379-400 (1991) · Zbl 0764.14021 [6] Loeser F., Sabbah, C.: Equations aux differences finies et determinants d’integrales de fonctions multiformes. Comment. Math. Helv.66, 458-503 (1991) · Zbl 0760.39001 · doi:10.1007/BF02566659 [7] Saito, T.: ? factor of a tamely ramified sheaf on a variety. (to appear in Invent. Math.) · Zbl 0790.14016 [8] Terasoma, T.: On the determinant of period with finite monodromy. J. Reine Angew. Math.433, 143-159 (1992) · Zbl 0753.14022 · doi:10.1515/crll.1992.433.143 [9] Terasoma, T.: On the determinant of Gauss-Manin connections and hypergeometric functions of hypersurfaces. Invent. Math.110, 441-471 (1992) · Zbl 0802.14019 · doi:10.1007/BF01231342 [10] Varchenko, A.N.: Beta function of Euler, Vandermonde determinant, Legendre equation and critical values of linear functions on configurations. Izv. Akad. Nauk SSSR53, 1206-1235 (1989),54, 146-158 (1990) · Zbl 0695.33004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.