×

Computation of self-similar solutions for mean curvature flow. (English) Zbl 0811.53011

From the author’s abstract: “We describe a numerical algorithm to compute surfaces that are approximately self-similar under mean curvature flow. The method restricts computation to a two-dimensional subspace of the space of embedded manifolds that is likely to contain a self-similar solution. Using the algorithm, we recover the self-similar torus of Angenent and find several surfaces that appear to approximate previously unknown self-similar surfaces. Two of them may prove to be counterexamples to the conjecture of uniqueness of the weak solution for mean curvature flow for surfaces”.

MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
PDFBibTeX XMLCite
Full Text: DOI Euclid EMIS

References:

[1] Altshuler S., ”Mean curvature flow through singularities for surfaces of rotation”
[2] Angenent S., Nonlinear Diffusion Equations and Their Equilibrium States pp 21– (1992) · doi:10.1007/978-1-4612-0393-3_2
[3] Chen Y., J. Diff. Geom. 33 pp 749– (1991)
[4] Chopp D. L., ”Flow under geodesic curvature” (1992)
[5] DOI: 10.1006/jcph.1993.1092 · Zbl 0786.65015 · doi:10.1006/jcph.1993.1092
[6] Chopp D. L., Experimental Mathematics pp 235– (1993) · Zbl 0806.53004 · doi:10.1080/10586458.1993.10504566
[7] DOI: 10.1002/cpa.3160450903 · Zbl 0801.35045 · doi:10.1002/cpa.3160450903
[8] Evans L. C., J. Diff. Geom. 33 pp 635– (1991)
[9] DOI: 10.2307/2154167 · Zbl 0776.53005 · doi:10.2307/2154167
[10] Falcone M., ”Level sets of viscosity solutions and applications” (1990)
[11] DOI: 10.2969/jmsj/04410099 · Zbl 0739.53005 · doi:10.2969/jmsj/04410099
[12] Grayson M., J. Diff. Geom. 26 pp 285– (1987)
[13] DOI: 10.1215/S0012-7094-89-05825-0 · Zbl 0677.53059 · doi:10.1215/S0012-7094-89-05825-0
[14] Huisken G., J. Diff. Geom. 20 pp 237– (1984) · Zbl 0556.53001 · doi:10.4310/jdg/1214438998
[15] Huisken G., J. Diff. Geom. 31 pp 285– (1991) · Zbl 0694.53005 · doi:10.4310/jdg/1214444099
[16] DOI: 10.1016/0021-9991(88)90002-2 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[17] DOI: 10.1007/BF01210742 · Zbl 0619.76087 · doi:10.1007/BF01210742
[18] Sethian J. A., J. Diff. Geom. 31 pp 131– (1989) · Zbl 0691.65082 · doi:10.4310/jdg/1214444092
[19] DOI: 10.1016/0021-9991(92)90140-T · Zbl 0752.65088 · doi:10.1016/0021-9991(92)90140-T
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.