zbMATH — the first resource for mathematics

Cohen-Macaulay Rees algebras of ideals having analytic deviation two. (English) Zbl 0812.13003
Let \(I\) be an ideal in a Gorenstein local ring \(A\) with infinite residue class field. We assume that (i) \(A/I\) is a Cohen-Macaulay ring, (ii) \(s = \text{ht}_ AI > 0\) and \(IA_ P\) is generated by an \(A_ P\)-regular sequence of length \(s\) for all \(P \in \text{Spec} A\) such that \(P \supseteq I\) and \(\dim A_ P \leq s + 1\), and (iii) the analytic spread of \(I\) is equal to \(s + 2\).
We investigate the Cohen-Macaulay property of the Rees algebra \(R(I) = \oplus_{n \geq 0} I^ n\) of \(I\) under these assumptions. Let \(J\) be a minimal reduction of \(I\). In this paper, it is shown that \(R(I)\) is Cohen-Macaulay if and only if the associated graded ring \(G(I) = \oplus_{n \geq 0} I^ n/I^{n + 1}\) is Cohen-Macaulay and the equality \(I^{s+2} = JI^{s+1}\) holds, which can be regarded as an analytic deviation 2 version of the result by the first author and S. Huckaba [Am. J. Math. 116, No. 4, 905-919 (1994; Zbl 0803.13002)]. And then, it is shown that \(R(I)\) is Cohen-Macaulay if and only if depth \(A/I^ 2 \geq \dim A/I - 2\) under the assumption that \(I^ 3 = JI^ 2\).
Reviewer: S.Goto (Tokyo)

13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13C14 Cohen-Macaulay modules
Full Text: DOI
[1] D. BUCHSBAUM AND D. EiSENBUD, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447^85. JSTOR: · Zbl 0373.13006 · doi:10.2307/2373926 · links.jstor.org
[2] M. BRODMANN, Asymptotic stability of Ass(M//”M), Proc. Amer. Math. Soc. 74 (1979), 16-18 Zentralblatt MATH: JSTOR: links.jstor.org · Zbl 0395.13008 · doi:10.2307/2042097 · www.zentralblatt-math.org
[3] R. C. COWSIK AND M. V. Now, On the fibres of blowing up, J. Indian Math. Soc. 40 (1976), 217 222. · Zbl 0437.14028
[4] S. GOTO, The Cohen-Macaulay symbolic Rees algebras for curve singularities, Mem. Amer. Math Soc. 526 (1994), 1-68.
[5] S. GOTO AND S. HUCKABA, On graded rings associated to analytic deviation one ideals, Amer. J. Math. 116(1994), 905-919. JSTOR: · Zbl 0803.13002 · doi:10.2307/2375005 · links.jstor.org
[6] S. GOTO AND Y. NAKAMURA, On the Gorensteinness of graded rings associated to ideals of analyti deviation one, Contemporary Mathematics 159 (1994), 51-72. · Zbl 0816.13004
[7] S. GOTO AND Y. NAKAMURA, On the Gorensteinness of graded rings associated to ideals of analyti deviation two, to appear in J. Algebra. · Zbl 0848.13005 · doi:10.1006/jabr.1995.1215
[8] S. GOTO AND K. WATANABE, On graded rings I, J. Math. Soc. Japan, 30 (1978), 179-213 · Zbl 0371.13017 · doi:10.2969/jmsj/03020179
[9] C. HUNEKE, On the associated graded ring of an ideal, Illinois J. Math. 26 (1982), 121-137 · Zbl 0479.13008
[10] M. HOCHSTER AND J. A. EAGON, Cohen-Macaulay rings, invariant theory, and the genericperfectio of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058. JSTOR: · Zbl 0244.13012 · doi:10.2307/2373744 · links.jstor.org
[11] S. HUCKABA AND C. HUNEKE, Powers of ideals having small analytic deviation, Amer. J. Math. 11 (1992), 367^03. JSTOR: · Zbl 0758.13001 · doi:10.2307/2374708 · links.jstor.org
[12] S. HUCKABA AND C. HUNEKE, Rees algebras of ideals having small analytic deviation, Trans. Amer Math. Soc. 339 (1993), 373^02. · Zbl 0813.13009 · doi:10.2307/2154225
[13] D. G. NORTHCOTT AND D. REES, Reductions of ideals in local rings, Math. Proc. Cambridge Philos Soc. 50 (1954), 145-158. · Zbl 0057.02601 · doi:10.1017/S0305004100029194
[14] C. PESKINE AND L. SZPIRO, Liasions des varietes algebriques. I, Invent. Math. 26 (1974), 271-302 · Zbl 0298.14022 · doi:10.1007/BF01425554 · eudml:142303
[15] N. V. TRUNG AND S. IKEDA, When is the Rees algebra Cohen-Macaulay, Comm. Algebra 17(1989), 2893-2922. · Zbl 0696.13015 · doi:10.1080/00927878908823885
[16] G. VALLA, Certain graded algebras are always Cohen-Macaulay, J. Algebra 42 (1976), 537-548 · Zbl 0338.13013 · doi:10.1016/0021-8693(76)90112-5
[17] P. VALABREGA AND G. VALLA, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93-101. · Zbl 0362.13007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.