Bican, Ladislav Butler groups of infinite rank. (English) Zbl 0812.20032 Czech. Math. J. 44, No. 1, 67-79 (1994). A torsion-free abelian group \(G\) is called a \(B_ 1\)-group if, for any torsion group \(T\), every balanced extension of \(T\) by \(G\) splits. \(G\) is called \(B_ 2\)-group if \(G\) is the union of a continuous well-ordered ascending chain \(0 = G_ 0 \subset \dots \subset G_ \alpha \subset G_{\alpha + 1} \dots\) \((\alpha < \tau)\) of pure subgroups where \(\tau\) is some fixed ordinal and, for each \(\alpha < \tau\), \(G_{\alpha + 1} = G_ \alpha + B_ \alpha\) with \(B_ \alpha\) a pure subgroup of a finite rank completely decomposable group. A \(B_ 2\)-group \(G\) is always a \(B_ 1\)-group and the converse holds if \(| G| \leq \aleph_ 1\). When \(| G| > \aleph_ 1\), additional set-theoretical hypotheses are needed to ensure the existence in \(G\) of a smooth ascending chain of pure separative (separable in Hill’s sense) subgroups connecting 0 to \(G\) with successive factors countable. Then the machinery developed by M. Dugas, P. Hill and the reviewer [Trans. Am. Math. Soc. 320, 643-664 (1990; Zbl 0708.20018)] can be used to show that a \(B_ 1\)-group \(G\) with such a chain is indeed a \(B_ 2\)-group. Dugas, Hill and the reviewer (loc. cit.) showed that the Continuum Hypothesis will yield the needed separative chain if \(| G| \leq \aleph_ \omega\) and L. Fuchs and M. Magidor [Isr. J. Math. 84, 239-263 (1993; Zbl 0789.20062)] showed that, under \(V = L\), groups of arbitrary cardinality will have such a separative chain. In this note, instead of assuming a set-theoretical hypothesis, the author assumes three “algebraic” hypotheses (EPS), (EPR) and (\(\text{EB}_ 2\)) for a \(B_ 1\)-group \(G\) and shows that \(G\) must then be a \(B_ 2\)-group. These three hypotheses, in particular, state that \(G\) has a smooth ascending chain of pure subgroups which are pre-separative – a condition weaker than separativity and further require that whenever \(G/H\) is a \(B_ 1\)-group for a prebalanced subgroup \(H\), then every prebalanced subgroup of smaller cardinality in \(G/H\) must be a \(B_ 2\)-group. {Reviewer’s remark: In a forthcoming article in J. Pure Appl. Algebra, L. Fuchs shows that a \(B_ 1\)-group \(G\) is \(B_ 2\)-group if and only if \(G\) has a smooth preseparative chain from 0 to \(G\) with successive factors countable}. Reviewer: K.M.Rangaswamy (Colorado Springs) MSC: 20K20 Torsion-free groups, infinite rank 20K27 Subgroups of abelian groups 03C50 Models with special properties (saturated, rigid, etc.) Keywords:Butler groups; separative subgroups; \(B_ 1\)-groups; \(B_ 2\)-groups; Continuum Hypothesis; \(V=L\); balanced extension; continuous well-ordered ascending chain; pure subgroups; finite rank completely decomposable group; separative chain; smooth ascending chain of pure subgroups; prebalanced subgroup; smooth preseparative chain Citations:Zbl 0708.20018; Zbl 0789.20062 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] U. Albrecht, P. Hill: Butler groups of infinite rank and axiom 3. Czech. Math. J. 37 (1987), 293-309. · Zbl 0628.20045 [2] L. Bican: Splitting in abelian groups. Czech. Math. J. 28 (1978), 356-364. · Zbl 0421.20022 [3] L. Bican: Purely finitely generated groups. Comment. Math. Univ. Carolinae 21 (1980), 209-218. · Zbl 0444.20044 [4] L. Bican: Pure subgroups of Butler groups. Proceedings of the Udine Conference April 1984, R. Göbel, at al. CISM Courses and Lectures no. 287 (eds.), Springer Verlag, Wien-New York, pp. 203-213. · Zbl 0569.20045 [5] L. Bican: On a class of locally Butler groups. Comment. Math. Univ. Carolinae 32 (1991), 597-600. · Zbl 0748.20029 [6] L. Bican, L. Fuchs: On abelian groups by which balanced extensions of a rational group split. J. Pure Appl. Algebra 78 (1992), 221-238. · Zbl 0779.20035 · doi:10.1016/0022-4049(92)90106-P [7] L. Bican, L. Fuchs: Subgroups of Butler groups. To appear. · Zbl 0847.20049 [8] L. Bican, L. Salce: Infinite rank Butler groups. Proc. Abelian Group Theory Conference, Honolulu, Lecture Notes in Math. vol. 1006, Springer-Verlag, 1983, pp. 171-189. · Zbl 0515.20035 [9] M. C. R. Butler: A class of torsion-free abelian groups of finite rank. Proc. London Math. Soc. 15 (1965), 680-698. · Zbl 0131.02501 · doi:10.1112/plms/s3-15.1.680 [10] M. Dugas, P. Hill, K. M. Rangaswamy: Infinite rank Butler groups II. Trans. Amer. Math. Soc. 320 (1990), 643-664. · Zbl 0708.20018 · doi:10.2307/2001694 [11] M. Dugas, K. M. Rangaswamy: Infinite rank Butler groups. Trans. Amer. Math. Soc. 305 (1988), 129-142. · Zbl 0641.20036 · doi:10.2307/2001044 [12] M. Dugas, B. Thomé: The functor Bext under the negation of CH. Forum Math. 3 (1991), 23-33. · Zbl 0723.20033 · doi:10.1515/form.1991.3.23 [13] L. Fuchs: Infinite Abelian groups, vol. I and II. Academic Press, New York, 1973 and 1977. · Zbl 0257.20035 [14] L. Fuchs: Infinite rank Butler groups. Preprint. · Zbl 0842.20045 · doi:10.1016/0022-4049(95)90015-2 [15] L. Fuchs, M. Magidor: Butler groups of arbitrary cardinality. To appear. · Zbl 0789.20062 [16] L. Fuchs, C. Metelli: Countable Butler groups. Contemporary Math. 130 (1992), 133-143. · Zbl 0769.20025 · doi:10.1090/conm/130/1176115 [17] L. Fuchs, G. Viljoen: Note on the extensions of Butler groups. Bull. Austral. Math. Soc. 41 (1990), 117-122. · Zbl 0677.20041 · doi:10.1017/S0004972700017901 [18] W. Hodges: In singular cardinality, locally free algebras are free. Algebra Universalis 12 (1981), 205-220. · Zbl 0476.03039 · doi:10.1007/BF02483879 [19] L. Nongxa: Homogeneous subgroups of completely decomposable groups. Arch. Comment. Math. 42 (1984), 208-213. · Zbl 0528.20040 · doi:10.1007/BF01191177 [20] F. Richman: Butler groups, valuated vector spaces and duality. Rend. Sem. Mat. Univ. Padova 72 (1984), 13-19. · Zbl 0576.20033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.