×

Symmetry reductions and exact solutions of a class of nonlinear heat equations. (English) Zbl 0812.35017

Summary: Classical and nonclassical symmetries of the nonlinear heat equation \(u_ t= u_{xx}+ f(u)\) are considered. The method of differential Gröbner bases is used both to find the conditions on \(f(u)\) under which symmetries other than the trivial spatial and temporal translational symmetries exist, and to solve the determining equations for the infinitesimals. A catalogue of symmetry reductions is given including some new reductions for the linear heat equation and a catalogue of exact solutions of the nonlinear heat equation for cubic \(f(u)\) in terms of the roots of \(f(u)=0\).

MSC:

35C05 Solutions to PDEs in closed form
35K05 Heat equation
35K57 Reaction-diffusion equations
35K55 Nonlinear parabolic equations
58J70 Invariance and symmetry properties for PDEs on manifolds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ablowitz, M. J.; Zeppetella, A., Bull. Math. Biol., 41, 835-840 (1979)
[2] Ames, W. F., (Nonlinear Partial Differential Equations in Engineering, vol. I (1967), Academic Press: Academic Press New York) · Zbl 0164.40901
[3] Ames, W. F., (Nonlinear Partial Differential Equations in Engineering, vol. II (1972), Academic Press: Academic Press New York) · Zbl 0255.35001
[4] Ames, W. F., Appl. Num. Math., 10, 235-259 (1992)
[5] Aris, R., (The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, vols. I and II (1975), Oxford Univ. Press: Oxford Univ. Press Oxford)
[6] Aronson, D. G.; Weinberger, H. F., Partial Differential Equations and Related Topics, (Goldstein, J. A., Lecture Notes in Mathematics, vol. 446 (1975), Springer: Springer Berlin), 5-49 · Zbl 0325.35050
[7] Aronson, D. G.; Weinberger, H. F., Adv. Math., 30, 33-76 (1978)
[8] Baumann, G., Lie Symmetries of Differential Equations (1992), Universität Ulm, preprint
[9] Bérubé, D.; de Montigny, M., preprint CRM-1822 (1992), Montreal
[10] Bluman, G. W.; Cole, J. D., J. Math. Mech., 18, 1025-1042 (1969)
[11] Bluman, G. W.; Cole, J. D., Similarity Methods for Differential Equations, (Applied Mathematical Sciences, vol. 13 (1974), Springer: Springer Berlin) · Zbl 0292.35001
[12] Bluman, G. W.; Kumei, S., Symmetries and Differential Equations, (Applied Mathematical Sciences, vol. 81 (1989), Springer: Springer Berlin) · Zbl 0718.35003
[13] Cariello, F.; Tabor, M., Physica D, 39, 77-94 (1989)
[14] Cariello, F.; Tabor, M., Physica D, 53, 59-70 (1991)
[15] Carminati, J.; Devitt, J. S.; Fee, G. J., J. Symb. Comp., 14, 103-120 (1992)
[16] Carrà-Ferro, G., (Proc. AAECC5. Proc. AAECC5, Menorca, Spain (1987)), 129-140
[17] Champagne, B.; Hereman, W.; Winternitz, P., Comput. Phys. Commun., 66, 319-340 (1991)
[18] Chen, Z.-X.; Guo, B.-Y., IMA J. Appl. Math., 48, 107-115 (1992)
[19] Chowdhury, S. R., Phys. Lett. A, 159, 311-317 (1991)
[20] Clarkson, P. A.; Hood, S., Europ. J. Appl. Math., 3, 381-414 (1992)
[21] Clarkson, P. A.; Kruskal, M. D., J. Math. Phys., 30, 2201-2213 (1989)
[22] Clarkson, P. A.; Mansfield, E. L., (Clarkson, P. A., Applications of Analytic and Geometric Methods to Nonlinear Differential Equations (1993), Kluwer: Kluwer Dordrecht), to appear · Zbl 0788.35067
[23] Cole, J. D., Q. Appl. Math., 9, 225-236 (1951)
[24] Coleman, C. J., J. Aust. Math. Soc. Ser. B, 33, 1-8 (1992)
[25] Conte, R., (Degasperis, A.; Fordy, A. P.; Lakshmanan, M., Nonlinear Evolution Equations: Integrability and Spectral Methods (1989), Manchester Univ. Press: Manchester Univ. Press Manchester), 187-192
[26] Dorodnitsyn, V. A., USSR Comput. Math. Math. Phys., 22, 115-122 (1982)
[27] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., (Higher Transcendental Functions, vol. II (1953), McGraw-Hill: McGraw-Hill New York) · Zbl 0051.30303
[28] Estévez, P. G., Phys. Lett. A, 171, 259-261 (1992)
[29] Estévez, P. G.; Gordoa, P. G., J. Phys. A., 23, 4831-4837 (1992)
[30] Fife, P. C.; McLeod, J. B., Arch. Ration. Mech. Anal., 65, 335-361 (1977)
[31] Fisher, R. A., Ann. Eugenics, 7, 355-369 (1937)
[32] Fitzhugh, R., Biophys. J., 1, 445-466 (1961)
[33] Frank-Kamenetskii, D. A., Diffusion and Heat Exchange in Chemical Kinetics (1955), Princeton Univ. Press: Princeton Univ. Press Princeton
[34] Frey, H.-D.; Glöckle, W. G.; Nonnenmacher, T. F., J. Phys. A, 25, 665-679 (1993)
[35] Fushchich, W. I., Ukr. Mat. Zh., 43, 1456-1470 (1991)
[36] Fushchich, W. I.; Nikitin, A. G., Symmetries of Maxwell’s Equations (1987), Reidel: Reidel Dordrecht · Zbl 0632.35071
[37] Fushchich, W. I.; Serov, N. I., Dokl. Akad. Nauk Ukr. SSR Ser A, 4, 24-28 (1990)
[38] Fushchich, W. I.; Zhdanov, R. Z., Phys. Rep., 172, 123-174 (1989)
[39] Gaeta, G., J. Phys. A., 23, 3643-3645 (1990)
[40] Galaktionov, V. A., Diff. Int. Eqns., 3, 863-874 (1990)
[41] Galaktionov, V. A., Quasilinear heat equations with first-order sign-invariants and new explicit solutions (1992), preprint
[42] Galaktionov, V. A.; Dorodnytzin, V. A.; Elenin, G. G.; Kurdjumov, S. P.; Samarskii, A. A., J. Sov. Math., 41, 1222-1292 (1988)
[43] Guo, B.; Chen, Z., J. Phys. A, 24, 645-650 (1991)
[44] Hadeler, K. P.; Rothe, F., J. Math. Biol., 2, 251-269 (1975)
[45] Harrison, B. K.; Estabrook, F. B., J. Math. Phys., 12, 653-666 (1971)
[46] Head, A., Lie: a MUMATH program for the calculation of the Lie algebra of differential equations (1990), CSIRO, Division of Material Science and Technology: CSIRO, Division of Material Science and Technology Clayton, Australia, preprint
[47] Hereman, W., (Conte, R.; Boccara, N., partially Integrable Evolution Equations in Physics (1990), Kluwer: Kluwer Dordrecht), 585-586
[48] Hereman, W., Review of symbolic software for the computation of Lie symmetries of differential equations, Euromath Bull., 21 (1993), to appear · Zbl 0891.65081
[49] Herod, S., MathSym: A mathematica program fro computing Lie symmetries, (Program in Applied Mathematics (1992), University of Colorado: University of Colorado Boulder), preprint
[50] Herrera, J. J.E.; Minzoni, A.; Ondarza, R., Physica D, 57, 249-266 (1992)
[51] Hill, J. M., Differential Equations and Group Methods for Scientists and Engineers (1992), CRC Press: CRC Press Boca Raton · Zbl 0847.34003
[52] Hill, J. M.; Pincombe, A. H., J. Aust. Math. Soc. Ser. B, 33, 290-320 (1992)
[53] Hirota, R., (Bullough, R. K.; Caudrey, P. J., Solitons, Topics Current Physics, vol. 17 (1980), Springer: Springer Berlin), 157-176, 1980
[54] Hopf, E., Commun. Pure Appl. Math., 3, 201-250 (1950)
[55] Janet, M., J. Math. Pure Appl., 3, 65-151 (1920)
[56] Janet, M., Leçons sur les Systèmes d’Équations (1929), Gauthier-Villers · JFM 55.0276.01
[57] Kaliappan, P., Physica D, 11, 368-374 (1984)
[58] Kawahara, T.; Tanaka, M., Phys. Lett. A, 97, 311-314 (1983)
[59] Kersten, P. H.M., Infinitesimal Symmetries: a Computational Approach, CWI Tract., 34 (1987) · Zbl 0648.68052
[60] Kolchin, E. R., Differential Algebra and Algebraic Groups (1973), Academic Press: Academic Press New York · Zbl 0264.12102
[61] Kolmogoroff, A.; Petrovsky, I.; Piscounov, N., Bull. Univ. Moscou Ser. Int. A, 1, 1-25 (1937)
[62] Levi, D.; Winternitz, P., J. Phys. A., 22, 2915-2924 (1989)
[63] Levine, H. A., SIAM Rev., 32, 262-288 (1990)
[64] Lisle, I. G., Equivalence Transformations for Classes of Differential Equations, (Ph.D. Thesis (1992), University British Columbia: University British Columbia Vancouver, Canada) · Zbl 1107.35011
[65] Mansfield, E. L., Differential Gröbner Bases, (Ph.D. Thesis (1992), University of Sydney: University of Sydney Australia) · Zbl 1072.68684
[66] E.L. Mansfield, Diffgrob (Release 2) User’s Manual.; E.L. Mansfield, Diffgrob (Release 2) User’s Manual.
[67] Mansfield, E. L.; Fackerell, E. D., Differential Gröbner Bases (1990), Macquire Univ: Macquire Univ Sydney, Australia, preprint 92/10
[68] Mayr, E.; Meyer, A., Adv. Math., 46, 305-329 (1982)
[69] Murray, J. D., Mathematical Biology (1989), Springer: Springer New York · Zbl 0682.92001
[70] Nagumo, J. S.; Arimoto, S.; Yoshizawa, S., (Proc. IRE, 50 (1962)), 2061-2070
[71] Newell, A. C.; Tabor, M.; Zeng, Y. B., Physica D, 29, 1-68 (1987)
[72] Newell, A. C.; Whitehead, J. A., J. Fluid Mech., 38, 279-303 (1969)
[73] Nucci, M. C., Interactive reduce programs for calculating classical, non-classical and Lie-Bäcklund symmetries of differential equations, ((1990), School of Mathematics, Georgia Institute of Technology: School of Mathematics, Georgia Institute of Technology Atlanta), preprint GT Math 062090-051 · Zbl 0774.68070
[74] Nucci, M. C., Nonclassical symmetries and Bäcklund transformations (1992), Dipartimento di Matematica, Università Perugia: Dipartimento di Matematica, Università Perugia Perugia, Italy, preprint 1992-5
[75] Nucci, M. C.; Clarkson, P. A., Phys. Lett. A, 164, 49-56 (1992)
[76] Olivier, F., Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms, (École Polytechnique Research Report LIX/RR/90/14 (1990))
[77] Olver, P. J., Applications of Lie Groups to Differential Equations, (Graduate Texts Math., vol. 107 (1986), Springer: Springer New York) · Zbl 0591.73024
[78] Olver, P. J., Direct reduction and differential constraints (1993), Univ. Maryland: Univ. Maryland MD, preprint
[79] Olver, P. J.; Rosenau, P., Phys. Lett. A, 114, 107-112 (1986)
[80] Olver, P. J.; Rosenau, P., SIAM J. Appl. Math., 47, 263-275 (1987)
[81] Oron, A.; Rosenau, P., Phys. Lett. A, 118, 172-176 (1986)
[82] Ovsiannikov, L. V., Group Analysis of Differential Equations (1982), Academic Press: Academic Press New York, [Trans. W.F. Ames] · Zbl 0485.58002
[83] Pankrat’ev, E. V., Acta Appl. Math., 16, 167-189 (1989)
[84] Pincombe, A. H.; Smyth, N. F., (Proc. R. Soc. London A, 433 (1991)), 479-498
[85] Pucci, E., J. Phys. A., 25, 2631-2640 (1992)
[86] Pucci, E.; Saccomandi, G., J. Math. Anal. Appl., 163, 588-598 (1992)
[87] Reid, G. J., J. Phys. A., 23, L853-L859 (1990) · Zbl 0724.35001
[88] Reid, G. J., Europ. J. Appl. Math., 2, 293-318 (1991)
[89] Reid, G. J., Europ. J. Appl. Math., 2, 319-340 (1991)
[90] Rogers, C.; Ames, W. F., Nonlinear Boundary Value Problems in Science and Engineering (1992), Academic Press: Academic Press Boston · Zbl 0686.35001
[91] Schwarz, F., Computing, 34, 91-106 (1985)
[92] Schwarz, F., SIAM Rev., 30, 450-481 (1988)
[93] Schwarz, F., Computing, 49, 95-115 (1992)
[94] Sherring, J., Symmetry determination and linear differential equation packages (1992), LaTrobe Univ: LaTrobe Univ Australia, preprint
[95] Shokin, Yu. I., The Method of Differential Approximation (1983), Springer: Springer New York · Zbl 0511.65067
[96] Smyth, N. F., J. Aust. Math. Soc. Ser. B, 33, 403-413 (1992)
[97] Stephani, H., (MacCallum, M., Differential Equations, their Solution using Symmetries (1989), C.U.P: C.U.P Cambridge) · Zbl 0704.34001
[98] Stormark, O., Formal and local solvability of PDEs, preprint TRITA-MAT-1988-11 (1988)
[99] Topunov, V. L., Acta Appl. Math., 16, 191-206 (1989)
[100] Veling, E. J.M., (Proc. R. Soc. Edinburgh, 90 (1981)), 41-61
[101] Vorob’ev, E. M., Acta Appl. Math., 24, 1-24 (1991)
[102] Webb, G. M., Physica D, 41, 208-218 (1990)
[103] Webb, G. M., J. Phys. A., 23, 3885-3894 (1990) · Zbl 0726.35116
[104] Weiss, J., J. Math. Phys., 25, 2226-2235 (1984)
[105] Weiss, J.; Tabor, M.; Carnevale, G., J. Math. Phys., 24, 522-526 (1983)
[106] Whittaker, E. E.; Watson, G. M., Modern Analysis (1927), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[107] Winternitz, P., Conditional symmetries and conditional integrability for nonlinear systems (1990), preprint CRM-1709
[108] Zidowitz, S., Nichtklassische Symmetrierduktionen hydrodynamischer Plasmagleichungen, (Master’s thesis (1992), Institut für Mathematische Physik, Technische Universität Carolo-Wilhelmina zu Branschweig: Institut für Mathematische Physik, Technische Universität Carolo-Wilhelmina zu Branschweig Germany)
[109] Zidowitz, S., Conditional symmetries and the direct reduction of partial differential equations (1992), preprint · Zbl 0822.35005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.