zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lagrangian geometrical models in physics. (English) Zbl 0812.53027
Summary: A brief survey of the best results in gravitation theory and relativistic geometrical optics deriving from the differential geometry of generalized Lagrange spaces is given.

53B40Finsler spaces and generalizations (areal metrics)
83C99General relativity
83-02Research monographs (relativity)
Full Text: DOI
[1] Miron, R.; Anastasiei, M.: Vector bundles, Lagrange spaces, applications in relativity. (1987) · Zbl 0616.53002
[2] Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces. (1986) · Zbl 0594.53001
[3] Miron, R.; Rosca, R.; Anastasiei, M.; Buchner, K.: Found. of physics letters. 5 (1992)
[4] Asanov, G. S.: Finsler geometry, relativity and gauge theories. (1985) · Zbl 0576.53001
[5] Aringazin, A. K.; Asanov, G. S.: Reports on math. Physics. 25, 35 (1988)
[6] Miron, R.; Kawaguchi, T.: Tensorsocietylagrangian geometrical theories and their applications to physics and engineering dynamical systems. Lagrangian geometrical theories and their applications to physics and engineering dynamical systems (1992)
[7] Miron, R.: J. math. Kyoto university. 23, 219 (1983)
[8] Hull, C. M.: Phys. letters. 269B, 275 (1991)
[9] R. Miron and G. Atanasiu, Lagrange geometry of second order (this issue). · Zbl 0812.53026
[10] Beil, R. G.: Int. J. Theoret. physics. 28, 659 (1989)
[11] Roxburgh, I. W.: Reports on math. Physics. 31, 171 (1992) · Zbl 0787.53084
[12] Miron, R.; Tavakol, R.: Publ. math. Debrecen. 41 (1992)
[13] Roxburgh, I. W.; Tavakol, R. K.; Den Bergh, N. Van: Tensor, N.S.. 51, 72 (1992)
[14] Miron, R.; Shigetaka, K.: Tensor, N.S.. 50, 177 (1991)
[15] R. Miron and G. Zet, Relativistic optics of the nondispersive media, Found. of Physics (to appear). · Zbl 0848.53050
[16] Ehlers, J.; Pirani, F. A. E.; Schild, A.: L.o’raifertaighgeneral relativity. General relativity (1972)
[17] Zet, G.; Manta, V.: Int. J. Theoret. physics. 32, 1011 (1993)
[18] Asanov, G. S.; Kawaguchi, T.: Tensor, N.S.. 49, 99 (1990)
[19] Roxburgh, I. W.: Tensor, N.S.. 51, 59 (1992)
[20] Will, C. M.: Experimental gravitation. (1986)
[21] Misner, Ch.; Thorne, K.; Wheeler, J. A.: Gravitation. 1111 (1973)
[22] Miron, R.; Kawaguchi, T.: Comptes rendus de l’academie des sciences (Paris). 312, 593 (1991)
[23] Fock, V. A.: Theory of space, time and gravitation. (1962) · Zbl 0085.42301
[24] Asanov, G. S.; Kawaguchi, T.: Tensor, N.S.. 50, 170 (1991)