×

zbMATH — the first resource for mathematics

On Hodges-Lehmann optimality of LR tests. (English) Zbl 0812.62019
Summary: It is shown that the likelihood ratio test statistics are Hodges-Lehmann optimal [J. L. Hodges and E. L. Lehmann, Ann. Math. Stat. 27, 324-335 (1956; Zbl 0075.292)] for testing the null hypothesis against the whole parameter space, provided that certain regularity conditions are fulfilled. These conditions are verified for the non-singular normal, multinomial and Poisson distribution.

MSC:
62F03 Parametric hypothesis testing
62F05 Asymptotic properties of parametric tests
62G10 Nonparametric hypothesis testing
62H15 Hypothesis testing in multivariate analysis
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] R. R. Bahadur: Some Limit Theorems in Statistics. SIAM, Philadelphia, 1971. · Zbl 0257.62015
[2] L. D. Brown: Non-local asymptotic optimality of appropriate likelihood ratio tests. Ann. Math. Statist. 42 (1971), 1206-1240. · Zbl 0247.62008 · doi:10.1214/aoms/1177693236
[3] D. G. Herr: Asymptotically optimal tests for multivariate normal distributions. Ann. Math. Statist. 38 (1967), 1829-1844. · Zbl 0153.47801 · doi:10.1214/aoms/1177698616
[4] J. L. Hodges, E. L. Lehmann: The efficiency of some nonparametric competitors of the \(t\)-test. Ann. Math. Statist. 27 (1956), 324-335. · Zbl 0075.29206 · doi:10.1214/aoms/1177728261
[5] W. Hoeffding: Asymptotically optimal tests for multinomial distributions. Ann. Math. Statist. 36 (1965), 369-408. · Zbl 0135.19706 · doi:10.1214/aoms/1177700150
[6] F. Rublík: On optimality of the LR tests in the sense of exact slopes. II. Application to individual distributions. Kybernetika 25 (1989), 117-135. · Zbl 0692.62016 · www.kybernetika.cz · eudml:27382
[7] S. Kourouklis: Hodges-Lehmann optimality of the likelihood ratio test in regular exponential families of distributions. TR. No. 73, Dept. of Statistics, The Pennsylvania State University, 1987.
[8] S. Kourouklis: Hodges-Lehmann efficacies of certain tests in multivariate analysis and regression analysis. Canadian J. Statist. 16 (1988), 87-95. · Zbl 0645.62032 · doi:10.2307/3315066
[9] A. M. Kshirsagar: Multivariate Analysis. Marcel Dekker, New York, 1972. · Zbl 0246.62064
[10] M. S. Srivastava, C. G. Khatri: An Introduction to Multivariate Statistics. North-Holland, New York 1979. · Zbl 0421.62034
[11] I. Vajda: Generalization of discrimination-rate theorems of Chernoff and Stein. Kybernetika 26 (1990), 273-288. · Zbl 0727.62026 · www.kybernetika.cz · eudml:28590
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.