Mazur, B. On the passage from local to global in number theory. (English) Zbl 0813.14016 Bull. Am. Math. Soc., New Ser. 29, No. 1, 14-50 (1993). In this survey article a comprehensive exposition of various local-global principles in number theory is given. Starting with the classical theorem of Hasse-Minkowski i.e. with the question of rational zeros of quadratic forms defined over the rational numbers a more geometric approach is emphasized, dealing with the general problem of passing from knowledge about local structures to knowledge about global structures. While the answer in the case of curves of genus 0 is quite satisfactory, it is known that the local-to-global principle does not always hold for curves of genus 1. The probably most popular example, Selmer’s curve is discussed in some detail.It is an open question, whether or not for all smooth projective varieties the local-to-global principle holds up to finite obstruction.Specially for abelian varieties \(A\) over \(\mathbb{Q}\) it is an open conjecture of Tate and Shafarevich, that the Tate-Shafarevich group \(\text{ Ш} (A/ \mathbb{Q})\) – which measures the deviation in the passage from local to global – is a finite group. It is known in general, that \(\text{ Ш} (A/ \mathbb{Q})\) is an abelian torsion group with the property that the kernel of the homomorphism given by multiplication by any nonzero integer \(n\) on it is finite.In the paper under review it is shown that the Tate-Shafarevich conjecture together with some technical extra conditions implies the more general local-to-global principle for smooth projective varieties up to finite obstruction (theorem 2). Proofs of this theorem and related facts are given in part III, proofs which as far as I know are not yet explicitly in the literature. The proofs use the cohomology of locally algebraic group schemes (for a projective variety \(V\) over a number field \(K\) one takes the locally constant group of components of the automorphism group \(\operatorname{Aut}(V/K))\). Connections with the Hasse-Weil \(L\)- function of modular elliptic curves are also mentioned (theorem 3). Part II of the paper is written in more technical language and deals with Selmer groups of elliptic curves, class field theory and Kolyvagin test classes. They provide under good circumstances bounds on the size of the Selmer group. Reviewer: H.-J.Bartels (Mannheim) Cited in 1 ReviewCited in 13 Documents MSC: 14G25 Global ground fields in algebraic geometry 14G20 Local ground fields in algebraic geometry 11-02 Research exposition (monographs, survey articles) pertaining to number theory 14-02 Research exposition (monographs, survey articles) pertaining to algebraic geometry 11Gxx Arithmetic algebraic geometry (Diophantine geometry) 14G05 Rational points 14J20 Arithmetic ground fields for surfaces or higher-dimensional varieties 14K15 Arithmetic ground fields for abelian varieties 14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) Keywords:rationality questions; rational points; Hasse-Weil \(L\)-function of modular elliptic curves; local-global principles; Selmer’s curve; smooth projective varieties; Tate-Shafarevich group; Tate-Shafarevich conjecture; Selmer groups of elliptic curves; class field theory; Kolyvagin test classes PDF BibTeX XML Cite \textit{B. Mazur}, Bull. Am. Math. Soc., New Ser. 29, No. 1, 14--50 (1993; Zbl 0813.14016) Full Text: DOI arXiv References: [1] Michael Artin, Algebraic spaces, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1969; Yale Mathematical Monographs, 3. · Zbl 0226.14001 [2] M. Artin, Néron models, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 213 – 230. [3] Massimo Bertolini and Henri Darmon, Kolyvagin’s descent and Mordell-Weil groups over ring class fields, J. Reine Angew. Math. 412 (1990), 63 – 74. · Zbl 0712.14008 [4] Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). · Zbl 0186.33202 [5] A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111 – 164 (French). · Zbl 0143.05901 [6] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergeb. Math. Grenzgeb., bd. 21, Springer-Verlag, New York, 1990. · Zbl 0705.14001 [7] Lawrence Breen, Bitorseurs et cohomologie non abélienne, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 401 – 476 (French). · Zbl 0743.14034 [8] J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. · Zbl 0395.10029 [9] J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991. · Zbl 0752.14033 [10] V. I. Chernousov, The Hasse principle for groups of type \?\(_{8}\), Dokl. Akad. Nauk SSSR 306 (1989), no. 5, 1059 – 1063 (Russian); English transl., Soviet Math. Dokl. 39 (1989), no. 3, 592 – 596. [11] John Coates, Elliptic curves with complex multiplication and Iwasawa theory, Bull. London Math. Soc. 23 (1991), no. 4, 321 – 350. · Zbl 0752.11024 [12] Paul J. Cohen, Decision procedures for real and \?-adic fields, Comm. Pure Appl. Math. 22 (1969), 131 – 151. · Zbl 0167.01502 [13] Jean-Louis Colliot-Thélène, Les grands thèmes de François Châtelet, Enseign. Math. (2) 34 (1988), no. 3-4, 387 – 405 (French). · Zbl 0678.01008 [14] J.-L. Colliot-Thélène and P. Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, preprint, 1992. · Zbl 0805.14010 [15] Henri Darmon, Euler systems and refined conjectures of Birch Swinnerton-Dyer type, \?-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 265 – 276. · Zbl 0823.11036 [16] Henri Darmon, A refined conjecture of Mazur-Tate type for Heegner points, Invent. Math. 110 (1992), no. 1, 123 – 146. · Zbl 0781.11023 [17] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), no. 1, 73 – 90. · Zbl 0628.10029 [18] William Duke and Rainer Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Invent. Math. 99 (1990), no. 1, 49 – 57. · Zbl 0692.10020 [19] Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307 – 327. · Zbl 0781.14022 [20] Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. · Zbl 0226.14011 [21] E. Golubeva and O. Fomenko, Application of spherical functions to a certain problem in the theory of quadratic forms, J. Soviet Math. 38 (1987), 2054-2060. · Zbl 0624.10014 [22] Benedict H. Gross, Kolyvagin’s work on modular elliptic curves, \?-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235 – 256. · Zbl 0743.14021 [23] A. Grothendieck, Techniques de descente et théorèmes d’existence en géométrie algébrique, Sém. Bourbaki, vol. 12 (59/60), Benjamin Inc., New York and Amsterdam, 1966. [24] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (\?\?\? 2), North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968 (French). Augmenté d’un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics, Vol. 2. · Zbl 0159.50402 [25] Groupes de monodromie en géométrie algébrique. I, Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1967 – 1969 (SGA 7 I); Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim. [26] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen, Math. Z. 90 (1965), 404-428; 92 (1966), 396-415. · Zbl 0152.00903 [27] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. · Zbl 0932.14001 [28] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. · Zbl 0367.14001 [29] H. Hasse, Über die Äquivalenz quadratischer Formen im Körper der rationalen Zahlen, J. Reine Angew. Math. 152 (1923), 205-224. · JFM 49.0102.02 [30] Henryk Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), no. 2, 385 – 401. · Zbl 0606.10017 [31] C. Jordan, Mémoire sur l’equivalence des formes, J. École Polytech XLVIII (1880), 112-150. [32] Shoshichi Kobayashi and Takushiro Ochiai, Mappings into compact manifolds with negative first Chern class, J. Math. Soc. Japan 23 (1971), 137 – 148. · Zbl 0203.39101 [33] СХ(\?,\?) фор а субцласс оф Щеил цурвес, Изв. Акад. Наук СССР Сер. Мат. 52 (1988), но. 3, 522 – 540, 670 – 671 (Руссиан); Енглиш трансл., Матх. УССР-Изв. 32 (1989), но. 3, 523 – 541. [34] -, On the Mordell-Weil group and the Shafarevich-Tate group of Weil elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 1154-1180. [35] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435 – 483. · Zbl 0742.14017 [36] V. A. Kolyvagin and D. Yu. Logachëv, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171 – 196 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 5, 1229 – 1253. [37] M. Kneser, Lectures on Galois cohomology of classical groups, Tata Institute of Fundamental Research, Bombay, 1969. With an appendix by T. A. Springer; Notes by P. Jothilingam; Tata Institute of Fundamental Research Lectures on Mathematics, No. 47. · Zbl 0246.14008 [38] Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. · Zbl 0221.14001 [39] Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183 – 266. · Zbl 0245.14015 [40] B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), no. 7, 593 – 610. · Zbl 0764.11021 [41] Y. Matijasevic, Enumerable sets are diophantine, Dokl. Akad. Nauk SSSR 191 (1970); English transl., Soviet Math. Dokl. 11 (1970), 354-358. · Zbl 0212.33401 [42] J. Milne, The conjectures of Birch and Swinnerton-Dyer for constant abelian varieties over function fields, Thesis, Harvard Univ., 1967. [43] -, The Tate-Shafarevich group of a constant abelian variety, Invent. Math. 5 (1968), 63-84. [44] J. S. Milne, On a conjecture of Artin and Tate, Ann. of Math. (2) 102 (1975), no. 3, 517 – 533. · Zbl 0343.14005 [45] J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. · Zbl 0613.14019 [46] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York, 1969. · Zbl 0188.34503 [47] Jan Nekovář, Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992), no. 1, 99 – 125. · Zbl 0729.14004 [48] -, p-Adic methods in arithmetic, Center for Pure and Appl. Math., Univ. of California, Berkeley, preprint, 1992. [49] André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ.Math. No. 21 (1964), 128 (French). [50] V. Nikulin, On factor groups of the automorphism groups of hyperbolic forms modulo subgroups generated by 2-reflections, Soviet Math. Dokl. 20 (1979), 1156-1158. · Zbl 0445.10020 [51] -, Quotient-groups of the automorphisms of hyperbolic forms by subgroups generated by 2-reflections, algebro-geometric applications, Current Problems in Math., vol. 18, Akad. Nauk SSSR, Usesoyuz. Inst. Nauchn. Tekhn. Informatsii, Moscow, 1981, pp. 3-114; English transl., J. Soviet Math. 22 (1983), no. 4. [52] Y. Nisnevich, Etale cohomology and arithmetic of semi-simple groups, Ph.D. thesis, Harvard Univ., 1982. [53] -, On certain arithmetic and cohomological invariants of semi-simple groups, Johns Hopkins Univ., preprint, 1989. [54] Takashi Ono, Arithmetic of orthogonal groups, J. Math. Soc. Japan 7 (1955), 79 – 91. · Zbl 0065.01201 [55] Bernadette Perrin-Riou, Travaux de Kolyvagin et Rubin, Astérisque 189-190 (1990), Exp. No. 717, 69 – 106 (French). Séminaire Bourbaki, Vol. 1989/90. · Zbl 0735.14017 [56] I. Piatetski-Shapiro and I. Shafarevich, A Torelli theorem for algebraic surfaces of type K3, Math. USSR-Izv. 5 (1971), 547-588. · Zbl 0253.14006 [57] V. P. Platonov, Arithmetic theory of algebraic groups, Uspekhi Mat. Nauk 37 (1982), no. 3(225), 3 – 54, 224 (Russian). · Zbl 0502.20025 [58] C. P. Ramanujam, A note on automorphism groups of algebraic varieties, Math. Ann. 156 (1964), 25 – 33. · Zbl 0121.16103 [59] Karl Rubin, Tate-Shafarevich groups and \?-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), no. 3, 527 – 559. · Zbl 0628.14018 [60] Karl Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988), no. 3, 701 – 713. · Zbl 0673.12004 [61] -, Kolyvagin’s system of Gauss sums, Arithmetic Algebraic Geometry , Progr. Math., vol. 89, Birkhäuser, Boston, MA, 1991, pp. 309-324. [62] Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. · Zbl 0704.11038 [63] Karl Rubin, The ”main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25 – 68. · Zbl 0737.11030 [64] Karl Rubin, The one-variable main conjecture for elliptic curves with complex multiplication, \?-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 353 – 371. · Zbl 0741.11028 [65] Karl Rubin, Stark units and Kolyvagin’s ”Euler systems”, J. Reine Angew. Math. 425 (1992), 141 – 154. · Zbl 0752.11045 [66] Karl Rubin, The work of Kolyvagin on the arithmetic of elliptic curves, Arithmetic of complex manifolds (Erlangen, 1988) Lecture Notes in Math., vol. 1399, Springer, Berlin, 1989, pp. 128 – 136. [67] Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955 – 1956), 1 – 42 (French). · Zbl 0075.30401 [68] Jean-Pierre Serre, Cohomologie galoisienne, With a contribution by Jean-Louis Verdier. Lecture Notes in Mathematics, No. 5. Troisième édition, vol. 1965, Springer-Verlag, Berlin-New York, 1965 (French). · Zbl 0812.12002 [69] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. · Zbl 0423.12016 [70] Carl Ludwig Siegel, Equivalence of quadratic forms, Amer. J. Math. 63 (1941), 658 – 680. · Zbl 0025.24702 [71] N. M. Stephens, The diophantine equation \?³+\?³=\?\?³ and the conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 231 (1968), 121 – 162. · Zbl 0221.10023 [72] John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179 – 206. · Zbl 0296.14018 [73] Francisco Thaine, On the ideal class groups of real abelian number fields, Ann. of Math. (2) 128 (1988), no. 1, 1 – 18. · Zbl 0665.12003 [74] A. Weil, Sur l’analogie entre les corps de nombres algébriques et les corps de fonctions algébriques (1939), Oeuvres Sci. I, Springer-Verlag, New York, 1980, pp. 236-240. · JFM 65.1140.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.